首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of different osmotic stresses (from 0 to –8× 105 Pa) obtained with NaC or polyethylene glycol 6000 solutions on the germination of flax, sesame and onion seeds were investigated. The effect of presoaking with gibberellic acid (GA3) on the germination of the above mentioned seeds was also studied. It was found that the rate of seed germination and the final germination percentages as well as the amount of water absorbed by the seeds were considerably lowered with the rise of osmotic stress levels whatever the stress agent used, more considerable reduction was obtained under polyethylene glycol 6000 than under NaCl. Presoaking with gibberellic acid increased the rate and the final germination percentage of osmotically stressed flax and sesame seeds, while those of stressed onion seeds were slightly retarded.  相似文献   

2.
3.
Effects of exogenous nitric oxide (NO) on the germination and antioxidant enzyme during cucumber seed germination were investigated under salt stress. Seeds of cucumber (Cucumis sativus L. cv. Jinyou 1) were treated with distilled water or NaCl in the presence or absence of NO donor sodium nitroprusside (SNP) during germination. Excess 50 mM NaCl reduced significantly the seed germination rate in a short term and speed of germination. When salt concentration increased, germination of cucumber seed was reduced and the time needed to complete germination lengthened. Addition of exogenous SNP in salt solution attenuated the salt stress effects in a dose-dependent manner, as indicated by accelerating the seed germination, as well as weight increase of budding seeds, and 50 μM SNP was optimal concentration. At 150 mM NaCl, the 50 μM exogenous SNP significantly increased the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and protein content, while decreased the contents of malondialdehyde (MDA). There were no obvious effects of exogenous NO on peroxidase (POD, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.6) activities under salt stress. Exogenous NO also increased the SOD and CAT isozyme expression under salt stress, which was in accordance with the improved antioxidant activities in the germinating seeds. The NO-induced salt stress resistance was associated with activated enzymes, and enhanced protein content, thus decreasing MDA content. It is concluded that exogenous NO treatment on cucumber seeds may be a good option to improve seed germination under saline conditions.  相似文献   

4.
Brassinosteroids are a class of plant polyhydroxysteroids with a diverse of functions in plant growth and development, while ethylene is a gaseous hormone involved in regulation of numerous physiological processes. To evaluate the roles of BR and ethylene in seed germination under conditions of salt stress, effects of 24-Epibrassinolide (EBR) and 1-aminocyclopropane-1-carboxylic acid (ACC) on seed germination of cucumber (Cucumis sativus) seeds in the presence of 250 mM NaCl were investigated. Seed germination was significantly inhibited by the presence of NaCl in the incubation medium, and the inhibitory effect was significantly alleviated by addition of EBR and ACC to the incubation medium containing NaCl. There was an increase in ethylene evolution during seed germination and this increase was suppressed by salt stress. The reduction in ethylene evolution from imbibed seeds by salt stress was attenuated by EBR. Salt stress inhibited ACC oxidase (ACO) activity and EBR reversed the salt stress-induced decrease in ACO activity. Salt stress reduced expression of gene encoding ACO (CsACO2), and EBR reversed the salt stress-induced down-regulation of CsACO2. The alleviative effect of EBR on seed germination in the presence of NaCl was diminished by antagonist of ethylene synthesis, aminoethoxyvinylglycine. These results indicate that both ethylene and BR are likely to be associated with suppression of seed germination under salt stress and that the mitigating effect of BR on salt stress-induced inhibition of seed germination may occur through its interaction with ethylene synthesis.  相似文献   

5.
Thiamin-binding proteins (TBPs) occur in many types of plant seeds. The biochemical and structural properties such as subunit structure and affinity for thiamin of the proteins have been characterized. However, the change of TBP and thiamin during seed maturation and germination is little known. Sesame (Sesamum indicum L.) seeds have unique albumin TBPs, because the other TBPs from plant seeds are generally globulins. In this study, we studied the change of the TBP and thiamin levels in sesame seeds. The protein content and thiamin-binding activity of the seeds increased with seed development after flowering. Immunological analysis using an antibody against the TBP of sesame seeds showed that the protein was accumulated in seeds during maturation. The thiamin content of the seeds increased with seed development after flowering. On the other hand, the thiamin-binding activity decreased during seed germination when TBP was degraded. The thiamin content of the seeds decreased during the germination. However, the amount of thiamin phosphate in the seeds during germination was little changed. These results suggested that thiamin was accumulated and stored as a complex with TBP in sesame seeds.  相似文献   

6.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   

7.
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF–MS and 2-DE-MALDI-TOF–MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.  相似文献   

8.
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.  相似文献   

9.
外源ALA、SNP和Spd对NaCl胁迫下桔梗种子萌发特性的影响   总被引:1,自引:0,他引:1  
以药用植物桔梗为研究对象,通过测定不同浓度的ALA、SNP和Spd对NaCl胁迫下桔梗种子发芽势、发芽率、萌发指数和平均根长等萌发指标的影响,寻找提高桔梗种子及幼苗在盐胁迫条件下抗性能力的途径.实验结果表明,75 mmol·L-1 NaCl胁迫下的桔梗种子萌发受到显著抑制,但是用不同浓度的ALA、SNP和Spd对桔梗种...  相似文献   

10.
11.
12.
The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var.communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress.These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme,which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.  相似文献   

13.
The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to 150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress. These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme, which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.  相似文献   

14.
该研究以掌叶大黄、唐古特大黄和药用大黄种子为材料,采用双层滤纸培养法,设置系列浓度NaCl (0、100、150、200、250 mmol/L) 胁迫试验,以及系列浓度水杨酸(SA)溶液(0、50、100、150、200、250 mg/L)拌种和浸种后盐胁迫实验,测定3种大黄种子萌发及幼苗生长指标,揭示外源水杨酸对盐胁迫下大黄种子萌发及幼苗生长的影响。结果显示:(1)随NaCl浓度增大3种大黄种子的发芽率均呈直线下降趋势,且子叶、胚轴、根和苗等生长均受到强烈抑制。(2)在拌种条件下, 200 mmol/L NaCl胁迫下掌叶大黄苗长在200 mg/L SA处理下受到显著促进; 200 mmol/L NaCl浓度盐胁迫下唐古特大黄种子发芽率在250 mg/L SA处理下受到显著抑制;100 mmol/L NaCl胁迫下药用大黄种子发芽势在200 mg/L SA处理下受到显著抑制,其发芽率在150 mg/L SA处理下得到显著抑制,其苗长在250 mg/L SA处理下受到显著抑制。(3)在浸种条件下, 200 mmol/L NaCl胁迫下掌叶大黄种子发芽率在50 mg/L SA处理下显著提高,其幼苗根长和苗长的生长在250 mg/L SA处理受到显著促进;200 mmol/L NaCl胁迫下唐古特大黄种子的发芽势在200 mg/L SA处理下得到显著促进,其幼苗根和苗的生长在50 mg/L SA处理下得到显著促进;100 mmol/L NaCl 胁迫下药用大黄根和苗的生长在100 mg/L SA处理下均得到显著促进。研究表明,3种大黄种子和幼苗对盐胁迫的响应趋势一致,但对不同浓度SA拌种和浸种的响应有较大差异。  相似文献   

15.
16.
17.
γ-氨基丁酸浸种对番茄种子及幼苗耐盐性调节的生理机制   总被引:1,自引:0,他引:1  
以番茄‘金棚一号’为材料,研究了外源γ-氨基丁酸(GABA)浸种处理对NaCl胁迫下种子萌发及幼苗生长和生理代谢的影响。结果显示:(1)NaCl胁迫显著抑制了番茄种子的萌发和胚根生长,同时导致番茄幼苗体内活性氧(O2.-、H2O2)大量积累,膜脂过氧化程度加重,幼苗叶片光合系统Ⅱ活性显著降低,幼苗的生长受到严重抑制。(2)外源GABA浸种能够显著提高盐胁迫下番茄种子的萌发和胚根的生长,并以10.00mmol.L-1 GABA浸种处理效果最好。(3)外源GABA浸种处理显著提高了NaCl胁迫下番茄幼苗根系和叶片抗氧化酶(SOD、POD和CAT)活性,降低了活性氧(O2.-、H2O2)的产生和膜脂过氧化程度,通过维持较高的光合系统Ⅱ活性,促进了幼苗的生长及生物量积累,但GABA的缓解效应存在较大的浓度差异,其中以10.00mmol.L-1 GABA处理效果较好。研究表明,10.00mmol.L-1 GABA浸种处理能够通过促进番茄种子萌发和幼苗生长来缓解盐胁迫的伤害。  相似文献   

18.
黑果枸杞种子萌发及幼苗生长对盐胁迫的响应   总被引:9,自引:0,他引:9  
王桔红  陈文 《生态学杂志》2012,31(4):804-810
研究不同浓度(0、1、2、3、6、9、14、18g.L-1)的盐溶液(NaCl、MgSO4、盐渍土壤)对河西走廊中部荒漠边缘的黑果枸杞种子吸胀、萌发和幼苗生长的影响,并观察胁迫解除后种子的反应。结果表明:黑果枸杞种子吸胀速率随NaCl、MgSO4和土壤溶液浓度的增大呈先升后降的趋势,吸水速度随胁迫时间的延长而减慢;种子萌发率随3种盐浓度的增大而降低,盐胁迫解除后种子仍具有较高的萌发率;发芽指数、活力指数、根长、下胚轴随3种盐浓度的增大而降低或先升后降,根轴比随盐胁迫的增强先升后降;随3种盐浓度的增大,种苗损害率增大,3种盐的胁迫效应依次NaCl>MgSO4>盐渍土壤溶液。黑果枸杞种子萌发和幼苗生长对NaCl胁迫较为敏感,其耐受的临界阈值是6g.L-1;种子萌发能耐受较高浓度的MgSO4的胁迫,幼苗生长对MgSO4胁迫较敏感,其耐受的临界阈值是9g.L-1;种子萌发和幼苗生长对生境盐渍土壤具有较强的耐受能力和适应性。  相似文献   

19.
用添加与不添加0.1mm01.L^-1NO供体硝普钠(sNP)的800mmol.L^-1NaCl溶液处理盐地碱蓬种子后,800mmol·L^-1NaCl处理下盐地碱蓬种子的萌发率、含水量和吸水速率显著增加,胚中脯氨酸的含量降低,但对Na^+、K^+和可溶性糖含量无显著影响。表明0.1mmol.L^-1SNP缓解800mmol.L^-1NaCl对盐地碱蓬种子萌发抑制的主要原因是盐地碱蓬种子含水量的提高,从而缓解了盐的渗透胁迫。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号