首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrative theory is proposed in which environmental carcinogenesis is viewed as a process by which the genetic control of cell division and differentiation is altered by carcinogens. In this theory, carcinogens include physical, chemical, and viral "mutagens," as well as chemical and viral gene modulators. Existing explanations of carcinogenesis can be considered either as somatic mutation theories or as epigenetic theories. Evidence seems to support the hypothesis that both mutations and epigenetic processes are components of carcinogenesis. The mutational basis of cancer is supported by the clonal nature of tumors, the mutagenicity of most carcinogens, high mutation frequencies in cells of cancer-prone human fibroblasts lacking DNA repair enzymes, the correlation of in vitro DNA damage and in vitro mutation and transformation frequencies with in vivo tumorigenesis, age-related incidences of various hereditary tumors, and the correlation between photoreactivation of DNA damage and the biological amelioration of UV-induced neoplasms. Since both mutagens and gene modulators can be carcinogenic it may be that carcinogens affect genes which control cell division. An integration of the mutation and epigenetic theories of cancer with the "two-stage" theory and Comings's general theory of carcinogenesis is proposed. This integrative theory postulates that carcinogens can affect regulatory genes which control a series of "transforming genes." A general hypothesis is advanced that involves a common mechanism of somatic mutagenesis via error-prone repair of DNA damage which links carcinogenesis, teratogenesis, atherosclerosis and aging. Various concepts are presented to provide a framework for evaluating the scientific, medical, and social implications of cancer.  相似文献   

2.
The thermodynamic properties of protein solutions are determined by the molecular interactions involving both solvent and solute molecules. A quantitative understanding of the relationship would facilitate more systematic procedures for manipulating the properties in a process environment. In this work the molecular basis for the osmotic second virial coefficient, B22, is studied; osmotic effects are critical in membrane transport, and the value of B22 has also been shown to correlate with protein crystallization behavior. The calculations here account for steric, electrostatic, and short-range interactions, with the structural and functional anisotropy of the protein molecules explicitly accounted for. The orientational dependence of the protein interactions is seen to have a pronounced effect on the calculations; in particular, the relatively few protein-protein configurations in which the apposing surfaces display geometric complementarity contribute disproportionately strongly to B22. The importance of electrostatic interactions is also amplified in these high-complementarity configurations. The significance of molecular recognition in determining B22 can explain the correlation with crystallization behavior, and it suggests that alteration of local molecular geometry can help in manipulating protein solution behavior. The results also have implications for the role of protein interactions in biological self-organization.  相似文献   

3.
A simple electrostatic model has been used to investigate the extent to which the structure of protein molecules is organized to optimize the internal electrostatic interactions. We find that the model provides a favorable total intra-protein electrostatic energy for almost all polar and charged groups of atoms, suggesting a high degree of structural optimization. By contrast, a significant fraction of individual group-group interactions are found to be unfavorable. An analysis as a function of the range of interactions included shows the electrostatic organization is generally relatively short range (up to 6 or 7 A between group centers). Although the model is very simple, it is useful for assessing the overall quality of protein experimental structures, for pin-pointing some types of errors and as a guide to improving protein design.  相似文献   

4.
A model approach is suggested to estimate the degree of spatial optimization of the electrostatic interactions in protein molecules. The method is tested on a set of 44 globular proteins, representative of the available crystallographic data. The theoretical model is based on macroscopic computation of the contribution of charge–charge interactions to the electrostatic term of the free energy for the native proteins and for a big number of virtual structures with randomly distributed on protein surface charge consetellations (generated by a Monte-Carlo technique). The statistical probability of occurrence of random structures with electrostatic energies lower than the energy of the native protein is suggested as a criterion for spatial optimization of the electrostatic interactions. The results support the hypothesis that the folding process optimizes the stabilizing effect of electrostatic interactions, but to very different degree for different proteins. A parallel analysis of ion pairs shows that the optimization of the electrostatic term in globular proteins has increasingly gone in the direction of rejecting the repulsive short contacts between charges of equal sign than of creating of more salt bridges (in comparison with the statistically expected number of shortrange ion pairs in the simulated random structures). It is observed that the decrease in the spatial optimization of the electrostatic interactions is usually compensated for by an appearance of disulfide bridges in the covalent structure of the examined proteins. © 1994 Wiley-Liss, Inc.  相似文献   

5.
We have established a specific correlation between the carcinogenic potency of a series of alkylating agents, with a mechanism of reaction ranging between Ingold's SN1-SN2 (ENU greater than MNU = MNNG greater than EMS greater than DMS = MMS) (Vogel et al., 1979; Bartsch et al., 1983) and specific target sites in the amino acids of nuclear proteins of cultured hepatocytes. More potent carcinogens, that react predominantly with an Ingold's SN1 mechanism, mainly alkylate the amino group of lysine and the guanido group of arginine. Weaker carcinogens, reacting with a mechanism closely resembling an Ingold's SN2, mainly alkylate the sulfhydryl group of the cysteine and the 3 position of the imidazolic ring of histidine. A compound with an intermediate type of reactivity alkylates, to a comparable extent, all 4 of the above-described positions. Although stable DNA damage brought about by alkylating carcinogens is considered to be the most likely cause of neoplastic transformation, epigenetic modifications may also play an important role in the process, especially because of their extreme stability. We have verified the existence of a linear correlation between the Swain-Scott substrate constant (S) of each compound and the amount of alkylation produced at the specific target sites. This type of correlation could be the basis of a 'short-term' genotoxicity assay in a battery of complementary tests.  相似文献   

6.
7.
The binding of labeled carcinogen [3H]DMBA to murine epidermal cells (MEC) DNA in culture has been studied. The influence of unlabeled noncarcinogenic and carcinogenic polycyclic aromatic hydrocarbons (PAH), several PAH metablites, and various directly and indirectly acting non-PAH carcinogens on the binding of [3H]DMBA to MEC DNA has been examined. All the carcinogenic PAH and some of non-carcinogenic PAH effectively inhibit the binding of [3H]DMBA to MEC DNA. The non-PAH chemical carcinogens requiring metabolic activation also reduce the binding of labeled DMBA to MEC DNA; however, a higher concentration of these compounds is required for 50% inhibition of binding than the concentrations of PAH for the same degree of inhibition of binding of [3H]DMBA to MEC DNA. The directly acting carcinogens do not significantly inhibit the binding of [3H]DMBA to DNA. The relationship between structures of PAH and their ability to inhibit the binding of [3H]DMBA to MEC DNA is also discussed. Thus, it appears that the binding of DMBA to cellular DNA is primarily controlled at a level of metabolism and to some extent at the level of binding of reactive metabolites to DNA.  相似文献   

8.
The molecular forces involved in protein-nucleic acid interaction are electrostatic, stacking and hydrogen-bonding. These interactions have a certain amount of specificity due to the directional nature of such interactions and the spatial contributions of the steric effects of different substituent groups. Quantum chemical calculations on these interactions have been reported which clearly bring out such features. While the binding energies for electrostatic interactions are an order of magnitude higher, the differences in interaction energies for structures stabilised by hydrogen-bonding and stacking are relatively small. Thus, the molecular interactions alone cannot explain the highly specific nature of binding observed in certain segments of proteins and nucleic acids. It is therefore logical to assume that the sequence dependent three dimensional structures of these molecules help to place the functional groups in the correct geometry for a favourable interaction between the two molecules. We have carried out 2D-FT nuclear magnetic resonance studies on the oligonucleotide d-GGATCCGGATCC. This oligonucleotide sequence has two binding sites for the restriction enzyme Bam H1. Our studies indicate that the conformation of this DNA fragment is predominantly B-type except near the binding sites where the ribose ring prefers a3E conformation. This interesting finding raises the general question about the presence of specificity in the inherent backbone structures of proteins and nucleic acids as opposed to specific intermolecular interactions which may induce conformational changes to facilitate such binding.  相似文献   

9.
The problem of viral packaging (condensation) and ejection from viral capsid in the presence of multivalent counterions is considered. Experiments show divalent counterions strongly influence the amount of DNA ejected from bacteriophage. In this paper, the strong electrostatic interactions between DNA molecules in the presence of multivalent counterions is investigated. It is shown that experiment results agree reasonably well with the phenomenon of DNA reentrant condensation. This phenomenon is known to cause DNA condensation in the presence of tri- or tetra-valent counterions. For divalent counterions, the viral capsid confinement strongly suppresses DNA configurational entropy, therefore the correlation between divalent counterions is strongly enhanced causing similar effect. Computational studies also agree well with theoretical calculations.  相似文献   

10.
We have recently developed an alkaline elution/rat hepatocyte assay to sensitively measure DNA single-strand breaks induced by xenobiotics in non-radiolabeled rat hepatocytes. Here we have evaluated this assay as a predictor of carcinogenic/mutagenic activity by testing 91 compounds (64 carcinogens and 27 non-carcinogens) from more than 25 diverse chemical classes. Hepatocytes were isolated from uninduced rats by collagenase perfusion, exposed to chemicals for 3 h, harvested, and analyzed for DNA single-strand breaks by alkaline elution. DNA determinations were done fluorimetrically. Cytotoxicity was estimated by glutamate-oxaloacetate transaminase release or by trypan blue dye exclusion. The assay correctly predicted the reported carcinogenic/non-carcinogenic potential of 92% of the carcinogens tested and 85% of non-carcinogens tested. The assay detected a number of compounds, including inorganics, certain pesticides, and steroids, which give false-negative results in other short-term tests. Only 2 rat liver carcinogens were incorrectly identified; the other carcinogens incorrectly identified are weakly or questionably carcinogenic (i.e., they cause tumors only in one species, after lifetime exposure, or at high doses). Some chemicals cause DNA damage only at cytotoxic concentrations; of 16 such compounds in this study, 12 are weak carcinogens suggesting a link between DNA damage caused by cytotoxicity and carcinogenesis. Our data indicate that this assay rapidly, reproducibly, sensitively, and accurately detects DNA single-strand breaks in rat hepatocytes and that the production of these breaks correlates well with carcinogenic and mutagenic activity.  相似文献   

11.
12.
Molecular geometries of some substituted (pyrroloamino)pyridines which possess anti-Alzheimer activity were optimized and potential-derived CHelpG point charges were computed using ab initio SCF molecular orbital approach employing the 3-21G basis set. AM1 molecular orbital calculations were performed using these optimized geometries and thus optimized Hybridization. Displacement Charges (HDC) combined with L?wdin charges continuously distributed in three dimension were obtained. Molecular electrostatic potential (MEP) maps of the molecules were obtained in two ways: (i) using the HDC-based model with the help of which MEP minima near the molecules were located, and (ii) using the CHelpG point charges, MEP values on the van der Waals surfaces of the molecules were computed. The MEP maps computed using both the methods have negative MEP regions near the pyridine nitrogen atom which appears to be the main binding site of the molecules with the appropriate receptor. Both electrostatic interaction and lipophilic association between these molecules and the receptor appear to contribute to biological activity.  相似文献   

13.
The structures of 3,3,3-trifluoromethyl ketene and 3,3-difluoromethyl ketene were studied by utilizing ab initio calculations with the 6-311++G** basis set at the (B3LYP) Density Functional level. Full optimization was performed for both molecules in their ground and transition states. Energy optimization of the systems under investigation shows that trifluoromethyl ketene exists only in the cis conformation (fluorine atom eclipses the ketene group). Difluoromethyl ketene was predicted to have two stable conformations: the cis (hydrogen atom eclipses the ketene group) and the gauche (fluorine atom eclipses the ketene group) form. The conformational stability of the molecules was found to be governed mainly by electrostatic and molecular orbital interactions. The vibrational frequencies were computed and complete assignments were provided on the basis of normal coordinate calculations and comparison with similar molecules. The potential energy distributions (PED) among symmetry coordinates were derived for the stable conformations of the two molecules.  相似文献   

14.
Graham SE  Syeda F  Cisneros GA 《Biochemistry》2012,51(12):2569-2578
Recent single-molecule F?rster resonance energy transfer studies of DNA polymerase I have led to the proposal of a postinsertion fidelity-checking site. This site is hypothesized to ensure proper base pairing of the newly inserted nucleotide. To help test this hypothesis, we have used energy decomposition, electrostatic free energy response, and noncovalent interaction analysis analyses to identify residues involved in this putative checking site. We have used structures of DNA polymerase I from two different organisms, the Klenow fragment from Escherichia coli and the Bacillus fragment from Bacillus stearothermophilus. Our results point to several residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Furthermore, many of these residues are conserved among A family polymerases. The identified residues provide potential targets for mutagenesis studies for investigation of the fidelity-checking site hypothesis.  相似文献   

15.
The binding of various damaged DNAs to the single-strand binding protein coded for by gene 32 from bacteriophage T4, on the one hand, and of oligopeptides containing tryptophan and lysine residues, on the other hand, is described. These molecules exhibit a higher affinity for modified DNA than for native DNA in so far as modification results in a local destabilization of the double-stranded structure of the nucleic acid. Stacking interactions between aromatic amino acids and nucleic acid bases appear to play a crucial role in the recognition of destabilized regions induced by chemical agents (carcinogens and antitumor drugs). These interactions confer to the peptide lysyl-tryptophyl-lysine an endonucleolytic activity specific for apurinic sites. From results obtained with such oligopeptides a model for the active sites of Ap-endonucleases is proposed which could account for the strategy used by the denV endonuclease from phage T4 during the first step of excision repair of pyrimidine dimers in DNA. The effect of the overall conformation of modified DNA on repair efficiency is discussed.  相似文献   

16.
The variation in inhibitor specificity for five different amine inhibitors bound to CST, BT, and the cold-adapted AST has been studied by use of association constant measurements, structural analysis of high-resolution crystal structures, and the LIE method. Experimental data show that AST binds the 1BZA and 2BEA inhibitors 0.8 and 0.5 kcal/mole more strongly than BT. However, structural interactions and orientations of the inhibitors within the S1 site have been found to be virtually identical in the three enzymes studied. For example, the four water molecules in the inhibitor-free structures of AST and BT are channeled into similar positions in the S1 site, and the nitrogen atom(s) of the inhibitors are found in two cationic binding sites denoted Position1 and Position2. The hydrophobic binding contributions for all five inhibitors, estimated by the LIE calculations, are also in the same order (-2.1 +/- 0.2 kcal/mole) for all three enzymes. Our hypothesis is therefore that the observed variation in inhibitor binding arises from different electrostatic interactions originating from residues outside the S1 site. This is well illustrated by AST, in which Asp 150 and Glu 221B, despite some distance from the S1 binding site, lower the electrostatic potential of the S1 site and thus enhance substrate binding. Because the trends in the experimentally determined binding energies were reproduced by the LIE calculations after adding the contribution from long-range interactions, we find this method very suitable for rational studies of protein-substrate interactions.  相似文献   

17.
Here, we present the results of continuum electrostatic calculations on a dataset of 222 non-equivalent salt bridges derived from 36 non-homologous high-resolution monomeric protein crystal structures. Most of the salt bridges in our dataset are stabilizing, regardless of whether they are buried or exposed, isolated or networked, hydrogen bonded or non-hydrogen bonded. One-third of the salt bridges in our dataset are buried in the protein core, with the remainder exposed to the solvent. The difference in the dielectric properties of water versus the hydrophobic protein interior cost buried salt bridges large desolvation penalties. However, the electrostatic interactions both between the salt-bridging side-chains, and between the salt bridges and charges in their protein surroundings, are also stronger in the interior, due to the absence of solvent screening. Even large desolvation penalties for burying salt bridges are frequently more than compensated for, primarily by the electrostatic interactions between the salt-bridging side-chains. In networked salt bridges both types of electrostatic interactions, those between the salt-bridging side-chains, and those between the salt bridge and its protein environment, are of similar magnitudes. In particular, a major finding of this work is that salt bridge geometry is a critical factor in determining salt bridge stability. Salt bridges with favorable geometrical positioning of the interacting side-chain charged groups are likely to be stabilizing anywhere in the protein structure. We further find that most of the salt bridges are formed between residues that are relatively near each other in the sequence.  相似文献   

18.
Protein-DNA interactions play an essential role in the genetic activities of life. Many structures of protein-DNA complexes are already known, but the common rules on how and where proteins bind to DNA have not emerged. Many attempts have been made to predict protein-DNA interactions using structural information, but the success rate is still about 80%. We analyzed 63 protein-DNA complexes by focusing our attention on the shape of the molecular surface of the protein and DNA, along with the electrostatic potential on the surface, and constructed a new statistical evaluation function to make predictions of DNA interaction sites on protein molecular surfaces. The shape of the molecular surface was described by a combination of local and global average curvature, which are intended to describe the small convex and concave and the large-scale concave curvatures of the protein surface preferentially appearing at DNA-binding sites. Using these structural features, along with the electrostatic potential obtained by solving the Poisson-Boltzmann equation numerically, we have developed prediction schemes with 86% and 96% accuracy for DNA-binding and non-DNA-binding proteins, respectively.  相似文献   

19.
Sarakatsannis JN  Duan Y 《Proteins》2005,60(4):732-739
The structure and folding mechanism of a given protein are determined by many factors, including the electrostatic interactions between charged residues of protein molecules known in general as salt bridges. In this study, analyses were conducted on 10,370 salt bridges in 2017 proteins and the results compared to previous statistical surveys of 36 protein structures. Although many of the general trends remained consistent with other studies, more detailed information was illuminated by the larger dataset. In particular, it was shown that there is a strong correlation between secondary structure and salt bridge formation, and that salt bridges display preferential formation in an environment of about 30% solvent accessible surface area.  相似文献   

20.
We present the analysis of the electronic structure for 31 steroids by using HeI UV photoelectron spectroscopy (UPS) and MO calculations. The electronic structure of molecules in the gas phase is related directly to steroid-receptor binding measurements. The results indicate that formally 'inert' sigma-skeleton plays a crucial role in diversifying the electronic structures of the title compounds ('ribbon-orbital effect'). This is an attempt to rationalize the biological activity of steroids (represented through steroid-receptor binding) by making direct correlation between spectroscopic and biological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号