首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of developing gonads of the clawed toad Xenopus laevis tadpoles to estradiol benzoate (EB) was studied between stages 44 and 67 using high resolution techniques. In presumptive genetic males the following results were obtained: 1) 100% sex reversal was induced when EB was administered before translocation of primordial germ cells (PGCs) from the gonadal epithelium into the medullary region (stages 44-50). 2) Ambiguous gonads were formed when EB treatment was initiated at stages 51-54, when PGCs were migrating into the medullary region. 3) Finally, normal testes differentiated when EB treatment began after the primordial germ cells had completed their translocation into the medulla (stages 55-56). These results suggest that EB might induce sex-reversal in genetic males by disruption of early somatic-germ cell interactions in the medullary region of the gonad. Consequently, later morphogenetic events might be deranged, preventing differentiation of testis. We propose a hypothesis in which precocious production of estradiol (E2) by genotypic females is the mechanism for primary sex differentiation.  相似文献   

2.
为探寻中国大鲵(Andrias davidianus)生殖腺胚后发育的特点及规律,采用解剖学与组织学技术对其形态结构变化进行了观察.结果表明,大鲵的原始生殖腺开始出现于出膜28~49 d;出膜133~175 d时一些个体生殖腺内已初步分化出原始卵泡;出膜259 ~343 d时一些个体生殖腺内已初步分化出生精小叶;出膜427 d时,卵巢已明显分化为皮质与髓质,且髓质内出现了卵巢腔,精巢内生精小叶及其内的腔隙、精巢间质等分化已较为明显;出膜511 d时精巢分化为明显的生精小叶和非成熟小叶两个区域.本文认为,大鲵与其他无羊膜类原始生殖腺的分化一般发生在胚后阶段,而且雌性的分化时间早于雄性.  相似文献   

3.
Summary Ontogenetic differentiation of the human thymus was investigated in 50 embryos by means of light and electron microscopic methods in an attempt to clarify the morphogenesis of the complicated microecology of thymic tissue. At the 8th gestational week (g.w.), the primordium of the thymus contains almost exclusively undifferentiated epithelial cells. At the 10th g.w., the epithelial cells in the central part are spindle-shaped. During the subsequent weeks the cortical region of the thymus becomes separated into lobes by mesenchymal septa containing hemopoietic precursor cells and large electronlucent cells with irregularly shaped nuclei. The latter cells are also found in the deeper presumptive medullary regions of the thymus; they differentiate into interdigitating reticulum cells (IDC). The permeation of the medulla of the thymus by non-epithelial IDC occurs concurrently with the formation of cortical and medullary epithelial cells. Between the 12th and 14th g.w. the cortical and medullary differentiation is completed. At this time-stage cortical small lymphocytes differ in morphological shape from medullary lymphocytes, the latter acquiring the appearance of immunocompetent T cells and establishing intimate contact with the IDC.These findings indicate that the thymic cortex and medulla contain different epithelial cells. In addition, the thymic medulla displays cells characterized by the morphology of typical interdigitating reticulum cells of peripheral lymphoid tissue. The structural pattern of the thymus is correlated to morphologically differing lymphoid cell populations in the cortical and medullary regions.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft and by the Sonderforschungsbereich 111The authors dedicate this paper to Professor Helmut Leonhardt on the occasion of his 60th birthday. The authors also appreciate the excellent technical assistance of Mrs. I. Knauer, Mrs. H. Waluk and Mrs. H. Siebke  相似文献   

4.
The morphogenesis of gonads in Bufo bufo tadpoles was studied, and ultrastructural differences between sexes were identified. All specimens analyzed initially developed gonads made up of a peripheral fertile layer (cortex) surrounding a small primary cavity. Subsequently a central layer of somatic cells (medulla) developed. Both layers were separated by two uninterrupted basal laminae between which a vestige of the primary cavity persisted. During female differentiation, the peripheral layer continued to be the fertile layer. In males, the central layer blended into the peripheral layer and the basal laminae disappeared. The somatic cells of the central layer came into direct contact with the germ cells; this did not occur in females. Testicular differentiation continued with the migration of germ cells towards the center of the gonad. The somatic elements surrounding the germ cells appeared to play an active role in their transfer to the center of the gonad. The peripheral layer shrank and became sterile. Two basal laminae then re-formed to separate the fertile central layer from the peripheral sterile one. Germ cells have always been thought to perform a passive role in sex differentiation in amphibians. Following the generally accepted "symmetric model", the mechanism of gonad development is symmetrical, with cortical somatic cells determining ovarian differentiation and medullary somatic cells determining testicular differentiation. In contrast, we found that sex differentiation follows an "asymmetric" pattern in which germ cells tend primarily toward a female differentiation and male differentiation depends on a secondary interaction between germ cells and medullary somatic cells.  相似文献   

5.
The structure of the thumus in adult specimens of a marine teleost, the cling fish Sicyases sanguineus, has been studied by light and transmission electron microscopy. Most cling fishes have an outer thymus located beneath the opercular epithelium. A few of them, however, have a large inner thymus besides a poorly developed outer thymus. In the well-developed outer thymus of cling fish there are three different zones: outer cortex, inner cortex, and medulla. The inner cortex is similar to the cortical region of the thumus in other vertebrates, whereas the outer cortex is a specialized lympho-epithelial zone containing cystic cells (also present in medullary region) and true Hassall's corpuscles. In accordance with the development of the thymic parenchyma, the medullary or basal region may appear either like a true thymic medulla or like a subcapsular region. In the inner thymus, a subcapsular or peripheral "medullary" region and a central area (inverted cortex) show structural features like those of the medullary (basal) and deep cortical regions of the outer thymus, respectively. In addition to the above regions, sometimes there is a lymphomyeloid perithymic infiltration that often extends along connective tissue septa into the perivascular spaces of the gland. Reticuloepithelial, mesenchymal, and unidentified types of stromal cells within the thymus are described. Some erythrocytes, granulocytes, and monocytoid cells are found, but no plasma cells nor erythropoietic foci are evident. The probable significance of these findings is discussed.  相似文献   

6.
Spontaneously cycling thymocytes have been labeled in vitro and in vivo by bromodeoxyuridine (BUdR), a non-reutilized precursor of DNA that is detectable by a monoclonal antibody. Studies of BUdR-labeled cells have included the determination of their anatomical location, size, and nuclear aspects and of their cell surface phenotype. Dividing blasts were initially located in the cortex (mainly but not exclusively in the subcapsular region) and expressed the double-negative (Lyt-2- L3T4-) and double-positive (Lyt-2+ L3T4+) phenotypes. The fate of these cells have been determined in days after BUdR administration, and we observed an initial double-negative to double-positive transition that was followed by the death of the majority of labeled cells in the cortex. As of day 3, the few surviving cells acquired a mature helper phenotype (Lyt-2- L3T4+) and began migrating into the thymic medulla. The exclusive medullary location of blast cell progeny was observed between days 5 and 10 post-BUdR administration. These results suggest a direct precursor-product relationship between dividing cortical cells and mature medullary thymocytes, and therefore support the single lineage model of intrathymic differentiation.  相似文献   

7.
Gonadal differentiation in premetamorphic Bombina orientalis is described and staged. The pattern of events during differentiation in Bombina differs in several respects from that previously described in other anurans. The Bombina gonad initially develops on the ventral surface of the vena cava, where there is no pre-existent somatic genital ridge prior to the arrival of the germ cells. The sexually undifferentiated gonad does not have a distinct cortex and medulla; instead, medullary cells ingress from the mesonephric blastema during sexual differentiation. Formation of a testis or an ovary appears to depend on the ability (or lack of ability) of the medulla to invade the germ cell-containing cortex. In the germ line, sexual differetiation can be recognized by a premeiotic increase in oogonial cell volume.  相似文献   

8.
Thymic medullary regions are formed in neonatal mice as islet-like structures, which increase in size over time and eventually fuse a few weeks after birth into a continuous structure. The development of medullary thymic epithelial cells (TEC) is dependent on NF-κB associated signaling though other signaling pathways may contribute. Here, we demonstrate that Stat3-mediated signals determine medullary TEC cellularity, architectural organization and hence the size of the medulla. Deleting Stat3 expression selectively in thymic epithelia precludes the postnatal enlargement of the medulla retaining a neonatal architecture of small separate medullary islets. In contrast, loss of Stat3 expression in cortical TEC neither affects the cellularity or organization of the epithelia. Activation of Stat3 is mainly positioned downstream of EGF-R as its ablation in TEC phenocopies the loss of Stat3 expression in these cells. These results indicate that Stat3 meditated signal via EGF-R is required for the postnatal development of thymic medullary regions.  相似文献   

9.
Development of ovaries in bovine fetuses   总被引:1,自引:0,他引:1  
The growth of ovaries, development of germ cells, formation of sex cords, folliculogenesis and dependence of these processes on the gonad morphogenesis stages were studied on 68 embryos and foetuses at the age of 1.5 to 9 months. Sex differentiation of ovaries was shown to take place in 1.5 month old embryo. The cords of connective tissue's cortical stroma appear also in 1.5 month old embryo, they develop in the dorsoventral direction and reach the gonad's covering epithelium in 6 month old foetuses. The formation of the medulla rudiment starts in 1.5 month old embryo when the gonad is separated from mesonephros and connected with it via the ovary gate. In 4 month old foetuses the ovary net transforms into a stellate structure. Important morphogenetic processes, such as the development of the ovary somatic elements, entry of the oocytes into meiotic prophase, formation of the sex cords and folliculogenesis, develop in the dorsoventral direction Germ cells in 9 month old foetuses are enclosed into primordial or, growing follicles.  相似文献   

10.
Summary VIP-like immunoreactivity was revealed in a few chromaffin cells, medullary ganglion cells and a plexus of varicose nerve fibers in the superficial cortex and single varicose fibers in the juxtamedullary cortex and the medulla of the rat adrenal gland. VIP-like immunoreactive chromaffin cells were polygonal in shape without any distinct cytoplasmic processes and they appeared solitarily. Their cytoplasm contained abundant granular vesicles having a round core and the immunoreactive material was localized to the granular core. VIP-immunoreactive ganglion cells were multipolar and had large intracytoplasmic vacuoles. The immunoreactive material was localized not only in a few granular vesicles but also diffusely throughout the axoplasm. VIP-immunoreactive varicose nerve fibers in the superficial cortex were characterized by abundant small clear vesicles and some large granular vesicles, while those in the juxtamedullary cortex and medulla and the ganglionic processes were characterized by abundant large clear vesicles, as well as the same vesicular elements as contained in the nerves in the superficial cortex. The immunoreactive material was localized on the granular cores and diffusely in the axoplasm in both nerves. Based on the similarity and difference in the composition of the vesicles contained in individual nerves, it is likely that the VIP-immunoreactive nerve fibers in the medulla and the juxtamedullary cortex are derived from the medullary VIP-ganglion cells, while those in the superficial cortex are of extrinsic origin. The immunoreactive nerve fibers in both the cortex and the medulla were often in direct contact with cortical cells and chromaffin cells, where no membrane specializations were formed. The immunoreactive nerve fibers were sometimes associated with the smooth muscle cells and pericytes of small blood vessels in the superficial cortex. In addition they were often seen in close apposition to the fenestrated endothelial cells in the cortex and the medulla, only a common basal lamina intervening. Several possible mechanisms by which VIP may exert its effect in the adrenal gland are discussed.  相似文献   

11.
Summary Changes in the ultrastructure of the thymus of the turtle Mauremys caspica, with special reference to its non-lymphoid components, were studied in relation to the seasonal cycle. The thymic cortex contains framework-forming epithelial-reticular cells and free macrophages, while the medulla includes, in addition, mature and presumptive pro-interdigitating cells. The ultrastructural features of these cells are generally similar to those described for non-lymphoid components of the mammalian thymus. The turtle thymus undergoes cortical involution in spring, with recovery periods in May–June and during autumn. A moderate involution occurs in winter. At the beginning of spring, cortical (but not medullary) epithelial-reticular cells show degenerative changes, probably related to high levels of circulating testosterone. In spring and autumn, mature interdigitating cells are absent, but macrophages, monocytes, and pro-interdigitating cells are found. During May–June, the cortical epithelial-reticular population recovers and macrophages, monocytes, and interdigitating cells are actively phagocytic. In summer, the epithelial-reticular cells in both cortex and medulla display normal ultrastructural features; mature and immature interdigitating cells are absent and some macrophages are detected occasionally. The results suggest that non-lymphoid components of the reptilian thymus can play a role in governing T-lymphocyte differentiation, and that the thymic cortex and medulla exhibit different cycles of seasonal activity.  相似文献   

12.
We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1-15 mm). Basal cortical LDF (1-3 mm, approximately 200-450 U) was greater than medullary LDF (5-15 mm, approximately 70-160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5-8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 +/- 6% but reduced cortical LDF (1 mm) by 54 +/- 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.  相似文献   

13.
American alligator (Alligator mississippiensis) ovary development is incomplete at hatching. During the months following hatching, the cortical processes of oogenesis started in ovo continues and folliculogenesis is initiated. Additionally, the medullary region of the gonad undergoes dramatic restructuring. We describe alligator ovarian histology at hatching, 1 week, 1 month, and 3 months of age in order to characterize the timing of morphological development and compare these findings to chicken ovary development. At hatching, the ovarian cortex presents a germinal epithelium containing oogonia and a few primary oocytes irregularly scattered between somatic epithelial cells. The hatchling medulla shows fragmentation indicative of the formation of lacunae. By 1 week of age, oocytes form growing nests and show increased interactions with somatic cells, indicative of the initiation of folliculogenesis. Medullary lacunae increase in diameter and contain secretory material in their lumen. At 1 month, nest sizes and lacunar diameters continue to enlarge. Pachytene oocytes surrounded by somatic cells are more frequent. Trabeculae composed of dense irregular connective tissue divide cortical nests. Three months after hatching oocytes in meiotic stages of prophase I up to diplotene are present. The ovary displays many enlarged follicles with oocytes in diplotene arrest, thecal layers, lampbrush chromosomes, and complete layers of follicular cells. The medulla is an elaborated complex of vascularized lacunae underlying the cortex and often containing discrete lymphoid aggregates. While the general morphology of the alligator ovary is similar to that of the chicken ovary, the progression of oogenesis and folliculogenesis around hatching is notably slower in alligators. Diplotene oocytes are observed at hatching in chickens, but not until 3 months in alligators. Folliculogenesis is completed at 3 weeks in chickens whereas it is still progressing at 3 months in alligators.  相似文献   

14.
The morphological development and plasticity of embryonic and postnatal rat adrenal medullary cells were studied in homologous adrenal grafts to the anterior chamber of the eye. The eyes of recipient rats were adrenergically denervated 10 days prior to grafting by extirpation of the superior cervical ganglion in order to increase levels of NGF and NGF-like activities in the iris. Grafts taken at the 15th day of embryonic development (E15), i.e., at the beginning of immigration of medullary progenitor cells into the adrenal cortical anlagen, contained no cortical or mature medullary cells after 2 weeks in oculo. Numerous sympathoblastic cells, however, were located at the anterior surface of the iris. E 16 and E 17 transplants showed abundant mature cortical tissue after 2 weeks. Small groups of medullary cells with the ultrastructural characteristics of mature pheochromoblasts or young chromaffin cells were interspersed among cortical cells without forming a discrete medulla. Neuronal cells were exclusively found outside the cortical cell mass. Sympathoblasts grew at the surface of the iris, while young sympathetic nerve cells, which were invested by Schwann cells and received synaptic axon terminals, were embedded into the stroma of the iris. Grafting of E 21 adrenals yielded very similar results except that, in a few instances, young chromaffin cells were located outside the cortex and sympathetic nerve cells were seen to be in close contact with cortical cells. In transplants of adult medullary cells typical mature adrenaline and noradrenaline cells were clearly distinguishable after 8 weeks even in the absence of cortical cells. The only indication of phenotypical changes in these cells was the formation by some of them, of neuritic processes which could be visualized in glyoxylic acid-treated whole mounts of irises. These results are compatible with the idea that embryonic adrenal medullary cells have the environmentally controlled potential to develop along the neuronal or endocrine line, but could also be interpreted in terms of a selection of a specific subpopulation with predetermined potentialities by a specific microenvironment. Moreover, these results suggest that increasing differentiation of medullary cells is accompanied by progressive restrictions in their genetic program, which eventually prevent full transdifferentiation of mature chromaffin into neuronal cells.  相似文献   

15.
Experiments were undertaken to test if thymocytes of "mature" or "medullary" phenotype were restricted to the medullary area of the thymus. A calculation based on direct cell counts on serial sections indicated that 11.5% of adult male CBA thymic lymphoid cells were within the medullary zone. Since only 3-4% of thymocytes were cortisone resistant, the majority of thymocytes within the medulla were, like cortical thymocytes, cortisone sensitive. A series of cell surface antigenic markers, used alone or in pairs, suggested that 13-15% of thymocytes were of medullary phenotype, somewhat more than the number of thymocytes actually present in the medulla. However, much of this discrepancy could be explained by differential death of cortical cells during isolation and staining, and by the existence in the cortex of a subpopulation of early blast cells which shared some, but not all markers with medullary thymocytes. A direct test for mature or medullary phenotype cells in the cortex involved selective transcapsular labeling of outer-cortical cells with fluorescent dyes, followed by multiparameter immunofluorescent analysis of the 10% labeled population. Outer-cortical thymocytes included some cells (mainly early blasts) sharing some markers with medullary thymocytes, but very few (less than 1%) of these cells expressed all the characteristic "mature" markers. Limit-dilution precursor frequency studies showed the level of functional cells in the outer cortex was extremely low. The overall conclusion was that the vast majority of cells of complete "mature" phenotype are confined to the thymic medulla. These findings favor the view that thymus migrants originate from the thymic medulla, but do not exclude a cortical origin. The results also illustrate the need for multiparameter analysis to distinguish medullary thymocytes from early blast cells.  相似文献   

16.
The structure of the gonad of the European eel (Anguilla anguilla [L.]), an “undifferentiated” gonochoristic teleost, was investigated by transmission electron microscopy from 6–8 cm elvers to 22 cm yellow eels with juvenile hermaphroditic gonads. The pear-shaped gonads of 6–8 cm elvers assume, in 12–15 cm eels, a lamellar shape and enlarge by migration of germ cells, which we refer to as primary primordial germ cells. In the gonads of ∼ 16 cm eels, the primary primordial germ cells multiply, giving rise to clusters of germ cells that have ultrastructural characteristics of the primary primordial germ cells but show giant mitochondria, enlarged Golgi complexes, and round bodies not limited by membranes. We refer to these as secondary primordial germ cells. In 16–18 cm eels, syncytial clones of oogonia interconnected by cytoplasmic bridges are also observed. In 18–22-cm-long eels, the gonads contain primordial germ cells, oogonial clones, early oocyte cysts, single oocytes in early growth stages, and primary spermatogonia. Such germ cells are present in the same cross section where they are either intermingled or are in areas of predominantly female germ cells close to areas with predominantly male germ cells. These gonads are juvenile hermaphroditic and should be considered ambisexual because in larger eels they differentiate either into an ovary or into a testis. Somatic cells always envelop the germ cells following their migration into the gonad. These somatic cells first show similar ultrastructural features and then differentiate either into early Sertoli cells investing spermatogonia, or into early follicular (granulosa) cells investing the early previtellogenic oocytes. In eels ∼ 14 cm long, primitive steroid-producing cells also migrate into the gonad. In the ambisexual gonad they differentiate either into immature Leydig cells in the male areas, or into early special cells of the theca in the female areas. Nerve fibers are joined to the steroid-producing cells. Gonad development and differentiation are also associated with structural changes of the connective tissue characterized by the progressive appearance and deposition of collagen fibrils first in the mesogonadium, then in the gonad vascular region, and then in the germinal region. The collagen-rich areas are massive in the male areas and reduced in the female ones. J. Morphol. 231:195–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
We investigated first stages of thymic medulla organisation in foetuses of Wistar strain rats. between 13th and 17th days of foetal life (GD). Medullary cells were identified by immunocytochemical localisation of neuron-specific enolase (NSE) as well as by traits of ultrastructure. The first thymic medullary precursor cells which were reactive for NSE were at first spread all over the thymic primordium. In the period of thymus colonisation by lymphoid cells, the following stages were distinguished in medulla organisation: (1) migration of NSE+ cells to the central portion of the thymus (GD 14-15), (2) small medullary epithelial patches, distributed within the thymus (GD 16), and (3) expansion of medullary patches into medullary compartment (GD 17). At the second and third stages of the medulla organisation, an increase in the number of NSE+ cells, followed by differentiation of their ultrastructure and increase in their biological activity were observed. We conclude that formation of medullary architectural pattern is controlled by interactions between maturing epithelial cells and developing lymphoid cells and by angiogenesis in the region.  相似文献   

18.
利用光学和电子显徽镜对蜜环菌索的发育及其结构分化进行了较系统研究。菌索的顶端有保持细胞不断分裂的分生组织区。由此衍生的菌丝细胞组成菌索的初生结构,包括分化不明显的表皮、皮层及初生髓;初生髓细胞体积大,核同步分裂产生多核体细胞,以一个或几个核为单位在爵体细胞中分化出细长的菌丝后,可以出芽方式自母体细胞中伸出,并且一开始就有薄壁与厚壁之分,同一母体细胞中可同时产生这两类菌丝。发育后期母体细胞破裂形成菌索的髓,两类疏松菌丝分布在其中。观察了成熟菌索的结构和侧枝的形成过程。菌索侧枝起源于皮层细胞,该细胞横向分裂首先形成分枝原基,之后突破菌索壳而分化出新的菌索顶端。讨论了蜜环菌索在不同寄主中的侵染方式。  相似文献   

19.
Interstrain differences in the structure of the mouse and rat adrenal cortex are well known, but related data on rabbits are not available. This study was planned to demonstrate possible strain differences in rabbit adrenal morphology and morphological evidence of a communication between cortex and medulla. For this purpose, the zonation of the adrenal cortex of intact mature male and female rabbits of different strains (New Zealand, Chinchilla and California) were compared using morphometry and the corticomedullary junction was evaluated for close relationship. Marked intersex and interstrain differences were found in the adrenocortical zonation. Female rabbits had larger adrenocortical zones than corresponding males. The rabbits of Chinchilla and California strains had the largest cortical sizes. This difference depended largely upon the higher thickness of the zona fasciculata. Whereas, there were no significant strain differences in the thickness of zona glomerulosa and zona reticularis. Furthermore, examination of corticomedullary junction showed that cortex and medulla were interwoven. Single and small accumulations of cortical cells were spread throughout the medulla. Our morphological data showed the presence of significant interstrain differences in the adrenocortical zonation in the rabbits and provide evidence for a possible paracrine interaction between medullary and cortical cells.  相似文献   

20.
革胡子鲇原始生殖细胞的起源、迁移及性腺分化   总被引:19,自引:0,他引:19  
革胡子鲇又称埃及胡子鲇,是一种多次产卵类型的硬骨鱼。作者用组织学、组织化学、电子显微镜等方法对革胡子鲇的原始生殖细胞(Primordial germ cells,PGCs)的起源、特征、迁移方式和性腺分化进行了研究。实验结果:PGCs来源于内胚层;PGCs的细胞质中存在着一种与生殖细胞有关的电子致密物--生殖质(Germ plasm);PGCs在迁移过程中有主动迁移的能力;PGCs到达生殖嵴的部位后,与生殖上皮细胞(Epithelisl cells)一起共同形成原始性腺;原始性腺分别逐步向精巢和卵巢分化;生殖质与性腺的分化有密切关系;卵巢的分化比精巢早。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号