首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tunicamycin, an antimetabolite which inhibits the N-glycosylation of proteins, does not block the initial cleavages of mouse embryos, even at relatively high concentrations. However, it can interfere with compaction and blastocyst formation. Although tunicamycin treatment from the two-cell or eight-cell stage can cause developmental arrest prior to hatching from the zona pellucida, much higher (sublethal) concentrations of the antimetabolite added at the morula or blastocyst stage do not specifically affect hatching of blastocysts, their attachment to the substratum, or outgrowth of trophoblast cells. The consequence of continuous exposure of embryos to moderate amounts (0.05 to 0.1 μg/ml) of tunicamycin through peri-implantation stages is death of trophoblast cells with little effect upon the cells of the inner cell mass (ICM). The latter give rise to apparently normal early endoderm cells in the presence of the antimetabolite. The incorporation of leucine, mannose, and fucose into acid-insoluble material by ICM cells is only minimally inhibited by tunicamycin. On the other hand, the antimetabolite causes a severe inhibition of incorporation of not only mannose, but also leucine, into acid-insoluble material in trophoblast cells. Thus, trophoblast cells resemble transformed cells by their extreme sensitivity to tunicamycin.  相似文献   

2.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

3.
Effects of Monensin on Assembly of Po Protein into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

4.
The effects of tunicamycin on protein glycosylation and cell differentiation were examined during early development of Dictyostelium discoideum. Tunicamycin inhibited cell growth reversibly in liquid medium. At a concentration of 3 μg/ml, tunicamycin completely inhibited morphogenesis and cell differentiation in developing cells. These cells remained as a smooth lawn and failed to undergo chemotactic migration. The expression of EDTA-resistant contact sites was also inhibited. The inhibition by tunicamycin was reversible if cells were washed free of the drug within the first 10 hr of incubation. After 12 hr of development, cells were protected from the drug by the sheath. When cells were treated with tunicamycin during the first 10 hr of development, incorporation of [3H]mannose and [3H] fucose was inhibited by approximately 75% within 45 min while no significant inhibition of [3H]leucine incorporation was observed during the initial 3 hr of drug treatment. The inhibition of protein glycosylation was further evidenced by the reduction in number of glycoproteins “stained” with 125I-labelled con A. A number of developmentally regulated high-molecular-weight glycoproteins, including the contact site A glycoprotein (gp80), were undetectable when cells were labelled with [3H]fucose in the presence of tunicamycin. It is therefore evident that glycoproteins with N-glycosidically linked carbohydrate moieties may play a crucial role in intercellular cohesiveness and early development of D. discoideum.  相似文献   

5.
Cultures of soybean cells incorporate [5,6-3H]-l-fucose into various cellular components including lipids and proteins. The membrane glyco-proteins were digested with pronase to produce glycopeptides, and the glycopeptides were isolated on columns of Biogel P-4. The major fucoselabeled glycopeptide sized as a Hexose15-17-N-acetylglucosamine2 (GlcNAc2) on columns of Biogel P-4. Fucose incorporation was also examined in the presence of the processing inhibitor swainsonine, and the glycosylation inhibitor tunicamycin. In the presence of swainsonine, the incorporation of fucose was not reduced but the glycopeptides were smaller in size and migrated like Hexose12-13-GlcNAc2 structures. On the other hand, tunicamycin inhibited the incorporation of fucose into the glycopeptides by 70 to 80%, indicating that the l-fucose was present in N-linked oligosaccharides.  相似文献   

6.
Human serum spreading factor (SF) is a cell adhesion and spreading-promoting glycoprotein purified from serum or plasma that mediates effects in a wide variety of animal cell culture systems. HepG2 human hepatoma cells were found to synthesize and secrete SF into culture medium. Quantitative immunoassay of the protein indicated a concentration of about 1 microgram/ml in 48 hr-conditioned medium from confluent cultures. Although fibronectin also was synthesized and secreted into the culture medium, HepG2 cell spreading was observed in response to human serum SF, but not in response to human plasma fibronectin. Immunoprecipitation of SF from culture medium of cells metabolically-labeled with leucine, fucose or glucosamine identified a single form of the molecule of approximately 70,000 daltons. Treatment of cultures with tunicamycin inhibited incorporation of fucose and glucosamine into immunoprecipitated SF, but did not prevent synthesis and secretion of the protein. Electrophoretic analysis and cell spreading assays showed that SF secreted by tunicamycin-treated HepG2 cells was of molecular weight (mw) approximately 60,000, and was biologically active.  相似文献   

7.
Hori H  Elbein AD 《Plant physiology》1981,67(5):882-886
Soybean cells in suspension culture incorporate [3H]mannose into dolichyl-phosphoryl-mannose and into lipid-linked oligosaccharides as well as into extracellular and cell wall macromolecules. Tunicamycin completely inhibited the formation of lipid-linked oligosaccharides at a concentration of 5 to 10 micrograms per milliliter, but it had no effect on the formation of dolichyl-phosphoryl-mannose. Tunicamycin did inhibit the incorporation of [3H]mannose into cell wall components and extracellular macromolecules, but even at 20 micrograms per milliliter of antibiotic there was still about 30% incorporation of mannose. The radioactivity in these macromolecules was localized in mannose (70%), rhamnose (20%), galactose (8%), and fucose (2%) in the absence of antibiotic. But when tunicamycin was added, very little radioactive mannose was found in cell wall or extracellular components. The incorporation of [3H]leucine into membrane components and [14C]proline into cell wall components by these suspension cultures was unaffected by tunicamycin. However, tunicamycin did inhibit the appearance of leucine-labeled extracellular macromolecules, probably because it prevented their secretion.  相似文献   

8.
Summary The individual effects of seven hormones on the in vitro growth rate of different classifications of human mammary epithelium were compared. Hormones used were: 17β-estradiol, estriol, progesterone, hydrocortisone, testosterone, prolactin, and growth hormone. Cell cultures included three established breast cell lines and primary monolayer cultures established form breast fluids and excised mammary tissue from 40 women and 4 men. Specimens comprised three classifications: normal, nonmalignant atypical, and malignant. Growth was quantitated in situ and expressed as population doubling time. Principal findings were: (a) estrogens, prolactin, and growth hormone stimulated growth of normal cells more frequently than growth of malignant cells, whereas testosterone and hydrocortisone stimulated growth of malignant cells more frequently than growth of normal cells; (b) cells cultured from nonmalignant atypias generally showed hormone response profiles intermediate between those of normal and malignant cells; (c) progesterone stimulated the growth of cells from malignant specimens but not the growth of cells from normal and nonmalignant atypical samples. This research was supported by NIAID Research Training Grant 5-TO1-A1-00332-06.  相似文献   

9.
Chick embryo cells were briefly exposed to the antibiotic, tunicamycin. Pre-exposed cells, compared to control cultures, showed a severe, progressive inhibition of the incorporation of glucosamine and mannose into total cellular macromolecules. Inhibition of the incorporation of glycine, leucine and proline was also progressive but not as marked as for the carbohydrates. Cellular secretion of all macromolecules was severely impaired, while comparison of the procollagens showed no difference in their subunit size or in their degree of glycosylation; the intracellular content of procollagen polypeptides was similar for both types of cells. In vitro studies showed that tunicamycin selectively inhibited glucosamine, but not mannose, incorporation into macromolecules. The composite results indicate that tunicamycin effectively inhibits protein synthesis, protein glycosylation and protein secretion in chick embryo cells.  相似文献   

10.
Inhibitory effects of tunicamycin on procollagen biosynthesis and secretion   总被引:2,自引:0,他引:2  
Chick embryo cells were briefly exposed to the antibiotic, tunicamycin. Pre-exposed cells, compared to control cultures, showed a severe, progressive inhibition of the incorporation of glucosamine and mannose into total cellular macromolecules. Inhibition of the incorporation of glycine, leucine and proline was also progressive but not as marked as for the carbohydrates. Cellular secretion of all macromolecules was severely impaired. while comparison of the procollagens showed no difference in their subunit size or in their degree of glycosylation; the intracellular content of procollagen polypeptides was similar for both types of cells. In vitro studies showed that tunicamycin selectively inhibited glucosamine, but not mannose, incorporation into macromolecules. The composite results indicate that tunicamycin effectively inhibits protein synthesis, protein glycosylation and protein secretion in chick embryo cells.  相似文献   

11.
During malignant transformation, changes in the expression profile of glycans may be involved in a variety of events, including the loss of cell-cell and cell-matrix adhesion, migration, invasion, and evasion of apoptosis. Therefore, modulation of glycan expression with drugs has promising therapeutic potential for various cancer types. In this study, we investigated the in vitro anticancer activity of the N-glycan biosynthesis inhibitors (swainsonine and tunicamycin) in cells derived from colorectal cancer (CRC). We also examined whether these inhibitors are able to induce radiosensitization and toxicity when used in combination with cisplatin or irinotecan, two current anticancer drugs. Our results show that treatment with tunicamycin inhibits cellular mechanisms related to the malignant phenotype, such as anchorage-dependent and anchorage-independent colony formation, migration and invasion, in undifferentiated HCT-116 colon cancer cells, whereas swainsonine only inhibits cell migration. We also observed that tunicamycin, but not swainsonine, caused radiosensitivity in HCT-116 cells. Moreover, the combination of swainsonine with cisplatin or irinotecan enhanced their toxicity in HCT-116 cells, while the combination of tunicamycin with these drugs had no effect. Given these results, we suggest that the modulation of N-glycan biosynthesis appears to be a potential therapeutic tool for CRC treatment because inhibition of this process induced anticancer activity in vitro. Additionally, the inhibition of the N-glycan biosynthesis in combination with chemotherapic drugs is a promising therapeutic strategy for enhancing radiation therapy.  相似文献   

12.
1) The content and accessibility of terminal sialic acid and galactose residues as well as the incorporation of [3H]fucose into glycoconjugates were determined in 48-h cultures of Ehrlich ascites tumor cells in a glucose-free medium supplemented with uridine, a compound which can fulfil the necessary functions of glucose. 2) Sialic-acid residues accessible to sialidase cleavage were reduced from 695 +/- 80 nmol/10(9) cells (controls) to 284 +/- 22 nmol/10(9) cells (43% of controls). In situ labeling using periodate oxidation followed by sodium borotritiide reduction revealed a tritium incorporation of 47 +/- 11% that of controls (= 4.1 x 10(5) cpm/mg protein). 3) Labeling of galactose residues of 80-90% of that of controls was achieved after treatment of the cells with galactose oxidase/sodium borotritiide. A nearly six-fold enhancement of tritium incorporation into galactose of control cells was observed after sialidase/galactose oxidase treatment and sodium borotritiide reduction (1.5----8.8 x 10(5) cpm/mg protein); only a 3.6-fold increase (1.2 x 10(5)----4.3 x 10(5) cpm/mg protein) was found with glucose-free cultured cells. It is concluded that the galactose content of the cell surface is reduced to about 50% of controls. 4) The incorporation of tritium into acid-insoluble precipitate after 24 h incubation with [3H]fucose and the activity of the acid-soluble fraction were enhanced by about 85% as compared to controls. The pattern of inhibition by tunicamycin of [3H]fucose uptake and incorporation was the same in glucose-containing standard medium and in glucose-free uridine medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Oviduct tissue slices were incubated with [3H]-leucine or [3H]-mannose in the presence and absence of tunicamycin, a specific inhibitor of lipid-mediated protein glycosylation. Conditions were established where tunicamycin had maximal effect on [3H]-mannose incorporation (greater than 90% inhibition) but a minimal effect on [3H]-leucine incorporation (less than 10% inhibition) into total TCA-insoluble products. Analysis of incubated tissues by SDS-polyacrylamide gel electrophoresis revealed that in the absence of tunicamycin, [3H]-mannose was incorporated into only a few proteins, of which ovalbumin represented the major radiolabeled component. Tunicamycin markedly reduced the incorporation of [3H]-mannose into ovalbumin and other oviduct glycoproteins. In contrast, analysis by SDS-polyacrylamide gel electrophoresis showed that [3H]-leucine was incorporated into a variety of proteins in the absence of tunicamycin. The radioactivity profile of some of these proteins was shifted toward lower Mr when oviduct slices were incubated in the presence of tunicamycin, with only a minimal decrease in protein labeling. Light microscopic autoradiograms of tissue incubated with [3H]-leucine in either the presence or absence of tunicamycin exhibited extensive labeling of tubular gland and epithelial cells. In the absence of tunicamycin, these cell types also become markedly labeled with [3H]-mannose; however, incorporation of label in both cell types was substantially reduced in the presence of tunicamycin. Qualitatively, labeling of tubular gland cells appeared greater than that of epithelial cells, largely due to the concentration of silver grains over the dense population of secretory vesicles in the tubular gland cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Biological activities of isolated tunicamycin and streptovirudin fractions   总被引:2,自引:0,他引:2  
The nucleoside antibiotics tunicamycin and streptovirudin were separated by high-performance liquid chromatography into a series of 256-nm-absorbing peaks. Most of the streptovirudin peaks eluted from a Biosil ODS column earlier than those of tunicamycin, indicating that they were less hydrophobic. With the exception of the first peak, 17 other tunicamycin peaks were potent inhibitors of the formation of dolichylpyrophosphoryl-N-acetylglucosamine with 50% inhibition of the solubilized GlcNAc-1-P transferase requiring about 10 ng of antibiotic per mL. These fractions also inhibited the synthesis of dolichylphosphorylglucose, but in these cases about 500 ng/mL was necessary to achieve 50% inhibition. In MDCK cells in culture, the four major tunicamycin peaks inhibited the incorporation of [2-(3)H]mannose into protein by 50% at about 0.2-0.5 microgram/mL, but [3H]leucine incorporation into protein was unaffected, except at high levels of antibiotic (5-10 microgram/mL). Essentially the same results were observed with the streptovirudin fractions except that they were somewhat less active and some inhibition of protein synthesis was observed with several of these peaks.  相似文献   

15.
Growth of Penicillium citrinum was reduced in the presence of tunicamycin. Under this condition, reduction of yield of cell wall was greater than that of cellular protein.

Chitin content in the cell wall was several times higher in giant cells formed from conidia in the presence of tunicamycin than in normal mycelia, while reducing sugar content, presumably reflecting glucan content, did not significantly differ. Galactosamine, which was present in normal mycelia and absent in conidia, could not be detected in giant cells. The amino acid composition of the cell wall and whole cells of giant cells differed distinctly from that of normal mycelia.

Tunicamycin did not significantly inhibit the synthesis of DNA, RNA and protein as judged by incorporation of radioactive precursors, while cell wall synthesis, as judged by incorporation of radioactive N-acetylglucosamine, glucose and alanine into acid insoluble fraction, was inhibited by more than 40% in the presence of 10 μg/ml of tunicamycin. In fungi tunicamycin probably acts primarily as an inhibitor of cell wall glycoprotein synthesis and not of chitin synthesis.

Cyclic nucleotides level also differed distinctly between giant cells and mycelia.  相似文献   

16.
Mammalian cells often contain an enzyme which transfers fucose onto the reducing terminal GlcNAc (GlcNAc-1) of N-glycans with an α1,6-linkage. In plants, on the other hand, the fucose is transferred to GlcNAc-1 with an α1,3-linkage. Insect cells can exhibit both enzymatic activities. Hitherto, the activity of these fucosyltransferases has been determined by the incorporation of radioactively labelled fucose into an acceptor glycopeptide. This assay, however, cannot discriminate these two activities. Here we report on the use of dansylated glycoasparagine for the specific determination of 1,3- and 1,6-fucosyltransferases. The two possible products and the substrate are separated on a reversed phase column and detected by fluorescence.  相似文献   

17.
Increasing hepatocyte membrane potentials by augmenting GABAergic activity inhibits nonmalignant hepatocyte proliferative activity. The objectives of this study were to document 1) potential differences (PDs) of four malignant hepatocyte cell lines, 2) GABAA receptor mRNA expression in the same cell lines, and 3) effects of restoring malignant hepatocyte PDs to levels approximating those of resting, nonmalignant hepatocytes. Hepatocyte PDs were documented in nonmalignant and malignant (Chang, HepG2, HuH-7, and PLC/PRF/5) hepatocytes with a fluorescent voltage-sensitive dye and GABAA receptor expression by RT-PCR and Western blot analyses. Compared with nonmalignant human hepatocytes, all four malignant cell lines were significantly depolarized (P < 0.0001, respectively). Only PLC/PRF/5 cells had detectable GABAA-beta3 receptor mRNA expression and all cell lines were negative for GABAA-beta3 receptor protein by Western blot analysis. Stable transfection of Chang cells with GABAA-beta3 receptor cDNA resulted in significant increases in PD and decreases in proliferative activity as manifest by decreased [3H]thymidine and bromodeoxyurieine incorporation rates, 4-[3-(4-lodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate activity, a lower mitotic index, prolongation of cell-doubling times, and attenuated growth patterns compared with cells transfected with vector alone. Colony formation in soft agar and the number of abnormal mitoses were also significantly decreased in GABAA-beta3 receptor transfected cells. The results of this study indicate 1) relative to healthy hepatocytes, malignant hepatocytes are significantly depolarized, 2) GABAA-beta3 receptor expression is absent in malignant hepatocyte cell lines, and 3) increasing the PD of malignant hepatocytes is associated with less proliferative activity and a loss of malignant features.  相似文献   

18.
There are much greater numbers of cell surface terminal, non-reducing alpha-D-galactorpyranosyl groups in highly malignant (metastatic) cells than are found in low malignant cells derived from the same murine fibrosarcoma. We have examined the contribution of these residues to attachment of the cells to various collagens and to plastic. Removal of these carbohydrate groups with alpha-galactosidase or blocking them with lectins from Griffonia simplicifolia seeds or with anti-blood group B antiserum all dramatically inhibited the attachment of both the highly malignant and the low malignant cells. Following removal with the enzyme, the alpha-D-galactopyranosyl end groups were rapidly resynthesized. This resynthesis was inhibited by tunicamycin, an inhibitor of de novo glycoprotein synthesis. This antibiotic also impaired cell attachment and, when used in addition to treatment with alpha-galactosidase, it inhibited cell attachment more than did treatment with the enzyme alone. The effects of all treatments on cell attachment were greater for the highly malignant than for the low malignant cells. With the latter cells, inhibition by lectin was seen only in the absence of serum, whereas the adhesion of highly malignant cells was affected in both the presence and the absence of serum. On their surface membrane the highly malignant cells express much more than do the low malignant cells of a glycoprotein that cross-reacts immunologically with laminin. The basement membrane glycoprotein laminin promotes cell attachment to collagen, and both glycoproteins contain terminal, non-reducing alpha-D-galactopyranosyl groups. Attachment of cells is a requirement for the formation of a metastasis, and thus the laminin-like molecule and the alpha-D-galactopyranosyl end groups (whether on the laminin-related moiety or on other cell surface molecules) may both be important for expression of the most malignant phenotype.  相似文献   

19.
The biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells was studied by following the incorporation of l-[1,5,6-(3)H]fucose, given intraperitoneally with and without chase, into Golgi, lateral basal and microvillus membranes. Each membrane fraction showed distinct kinetics of incorporation of labelled fucose and was differently affected by the chase, which produced a much greater decrease in incorporation of label into Golgi and microvillus than into lateral basal membranes. The kinetic data suggest a redistribution of newly synthesized glycoproteins from the site of fucosylation, the Golgi complex, directly into both lateral basal and microvillus membranes. The observed biphasic pattern of label incorporation into the microvillus membrane fraction may be evidence for a second indirect route of incorporation. The selective effect of the chase suggests the presence of two different pools of radioactive fucose in the Golgi complex that differ in (1) their accessibility to dilution with non-radioactive fucose, and (2) their utilization for the biosynthesis of membrane glycoproteins subsequently destined for either the microvillus or the lateral basal parts of the plasmalemma. The radioactively labelled glycoproteins of the different membrane fractions were separated by sodium dodecyl sulphate/polyacrylamide-slab-gel electrophoresis and identified by fluorography. The patterns of labelled glycoproteins in Golgi and lateral basal membranes were identical at all times. At least 14 bands could be identified shortly after radioactive-fucose injection. Most seemed to disappear at later times, although one of them, which was never observed in microvillus membranes, increased in relative intensity. All but two of the labelled glycoproteins present in the microvillus membrane corresponded to those observed in Golgi and lateral basal membranes shortly after fucose injection. The patterns of labelled glycoproteins in all membrane fractions were little affected by the chase. These data support a flow concept for the insertion of most surface-membrane glycoproteins of the intestinal villus cells.  相似文献   

20.
Genetic control of tumorigenicity in interspecific mammalian cell hybrids.   总被引:5,自引:0,他引:5  
R Kucherlapati  S I Shin 《Cell》1979,16(3):639-648
The nature of genetic control of cellular malignancy was investigated by examining the tumorigenicity of a series of interspecific mouse-human cell hybrids in the athymic nude mouse. Two highly malignant but genetically distinct mouse cell lines, A9 and PG19, were hybridized with three normal human diploid fibroblast strains, and 19 independently arising hybrid clones were isolated. Each of these clones was capable of forming progressive lethal tumors in the nude mouse, and thus resembled the malignant parental mouse cells rather than the nonmalignant parental human cells. We failed to obtain any evidence for complete suppression of tumorigenicity in these cell hybrids. The absence of suppression was observed regardless of the extent and composition of the human chromosome complements retained in the hybrid clones; the results of detailed cytological and isoenzyme analyses would make it highly improbable that the observed lack of suppression was due to cellular selection in vivo for a more tumorigenic subpopulation in the injected hybrid cells. These data demonstrate that at least for the parental cell combinations used in this study, no human chromosome, when present singly in the mouse-human cell hybrids, can suppress the tumorigenic phenotype of the mouse cells. Our results are consistent with the view that the suppression of cellular malignancy previously demonstrated in intraspecific (mouse × mouse) somatic cell hybrids does not occur in interspecific (mouse-human) cell hybrids, or alternatively, genetic determinants located on two or more human chromosomes are required simultaneously to suppress the malignancy of the mouse cells in cell hybrids derived from malignant mouse cell and nonmalignant human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号