共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal-induced unfolding domains in aldolase identified by amide hydrogen exchange and mass spectrometry. 下载免费PDF全文
Amide hydrogen exchange has been measured in short segments of intact rabbit muscle aldolase at temperatures of 14-50 degrees C by the protein fragmentation/mass spectrometry method (Zhang Z, Smith DL, 1993, Protein Sci 2:522-531). Deuterium levels in some segments did not change over the temperature range of the measurements, whereas deuterium levels in other segments increased rapidly with temperature. These results demonstrate that the equilibrium constant for local unfolding, Kunf, of some segments increases with temperature in the low temperature range (14-30 degrees C) of this study. Aldolase begins to lose activity at temperatures above 40 degrees C. In the 40-50 degrees C temperature range, Kunf is greater than 10(-4) in some regions and less than 10(-6) in other regions. This wide range of regional stability in the temperature range where aldolase begins to denature is interpreted in terms of cooperative unfolding/folding domains. Regions of highest stability were located along the hydrophobic subunit binding surface. It is proposed that hydrogen exchange might be used to identify unfolding domains in multidomain proteins whose thermodynamic properties have been determined by differential scanning calorimetry. 相似文献
2.
Serpins are a class of protease inhibitors that initially fold to a metastable structure and subsequently undergo a large conformational change to a stable structure when they inhibit their target proteases. How serpins are able to achieve this remarkable conformational rearrangement is still not understood. To address the question of how the dynamic properties of the metastable form may facilitate the conformational change, hydrogen/deuterium exchange and mass spectrometry were employed to probe the conformational dynamics of the serpin human alpha(1)-antitrypsin (alpha(1)AT). It was found that the F helix, which in the crystal structure appears to physically block the conformational change, is highly dynamic in the metastable form. In particular, the C-terminal half of the F helix appears to spend a substantial fraction of time in a partially unfolded state. In contrast, beta-strands 3A and 5A, which must separate to accommodate insertion of the reactive center loop (RCL), are not conformationally flexible in the metastable state but are rigid and stable. The conformational lability required for loop insertion must therefore be triggered during the inhibition reaction. Beta-strand 1C, which anchors the distal end of the RCL and thus prevents transition to the so-called latent form, is also stable, consistent with the observation that alpha(1)AT does not spontaneously adopt the latent form. A surprising degree of flexibility is seen in beta-strand 6A, and it is speculated that this flexibility may deter the formation of edge-edge polymers. 相似文献
3.
William Burkitt Paula Domann Gavin O'Connor 《Protein science : a publication of the Protein Society》2010,19(4):826-835
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains. 相似文献
4.
5.
Pandit D Tuske SJ Coales SJ E SY Liu A Lee JE Morrow JA Nemeth JF Hamuro Y 《Journal of molecular recognition : JMR》2012,25(3):114-124
Understanding antigen-antibody interactions at the sub-molecular level is of particular interest for scientific, regulatory, and intellectual property reasons, especially with increasing demand for monoclonal antibody therapeutic agents. Although various techniques are available for the determination of an epitope, there is no widely applicable, high-resolution, and reliable method available. Here, a combination approach using amide hydrogen/deuterium exchange coupled with proteolysis and mass spectrometry (HDX-MS) and computational docking was applied to investigate antigen-antibody interactions. HDX-MS is a widely applicable, medium-resolution, medium-throughput technology that can be applied to epitope identification. First, the epitopes of cytochrome c-E8, IL-13-CNTO607, and IL-17A-CAT-2200 interactions identified using the HDX-MS method were compared with those identified by X-ray co-crystal structures. The identified epitopes are in good agreement with those identified using high-resolution X-ray crystallography. Second, the HDX-MS data were used as constraints for computational docking. More specifically, the non-epitope residues of an antigen identified using HDX-MS were designated as binding ineligible during computational docking. This approach, termed HDX-DOCK, gave more tightly clustered docking poses than stand-alone docking for all antigen-antibody interactions examined and improved docking results significantly for the cytochrome c-E8 interaction. 相似文献
6.
Tsutsui Y Kuri B Sengupta T Wintrode PL 《The Journal of biological chemistry》2008,283(45):30804-30811
The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization. 相似文献
7.
Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry
Brock M Fan F Mei FC Li S Gessner C Woods VL Cheng X 《The Journal of biological chemistry》2007,282(44):32256-32263
Exchange proteins directly activated by cAMP (Epac) play important roles in mediating the effects of cAMP through the activation of downstream small GTPases, Rap. To delineate the mechanism of Epac activation, we probed the conformation and structural dynamics of Epac using amide hydrogen/deuterium exchange and structural modeling. Our studies show that cAMP induces significant conformational changes that lead to a spatial rearrangement of the regulatory components of Epac and allows the exposure of the catalytic core for effector binding without imposing significant conformational change on the catalytic core. Homology modeling and comparative structural analyses of the cAMP binding domains of Epac and cAMP-dependent protein kinase (PKA) lead to a model of Epac activation, in which Epac and PKA activation by cAMP employs the same underlying principle, although the detailed structural and conformational changes associated with Epac and PKA activation are significantly different. 相似文献
8.
9.
Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. 总被引:5,自引:13,他引:5 下载免费PDF全文
A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins. 相似文献
10.
Seema Sharma Haiyan Zheng Yuanpeng J. Huang Asli Ertekin Yoshitomo Hamuro Paolo Rossi Roberto Tejero Thomas B. Acton Rong Xiao Mei Jiang Li Zhao Li‐Chung Ma G. V. T. Swapna James M. Aramini Gaetano T. Montelione 《Proteins》2009,76(4):882-894
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three‐dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of 1H/2H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N‐ and C‐terminal tails were evaluated using 1H‐15N HSQC and 1H‐15N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS‐based truncated construct for a 77‐residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
11.
12.
Sheila S. Jaswal 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(6):1188-1201
Over the past two decades, hydrogen exchange mass spectrometry (HXMS) has achieved the status of a widespread and routine approach in the structural biology toolbox. The ability of hydrogen exchange to detect a range of protein dynamics coupled with the accessibility of mass spectrometry to mixtures and large complexes at low concentrations result in an unmatched tool for investigating proteins challenging to many other structural techniques. Recent advances in methodology and data analysis are helping HXMS deliver on its potential to uncover the connection between conformation, dynamics and the biological function of proteins and complexes. This review provides a brief overview of the HXMS method and focuses on four recent reports to highlight applications that monitor structure and dynamics of proteins and complexes, track protein folding, and map the thermodynamics and kinetics of protein unfolding at equilibrium. These case studies illustrate typical data, analysis and results for each application and demonstrate a range of biological systems for which the interpretation of HXMS in terms of structure and conformational parameters provides unique insights into function. This article is part of a Special Issue entitled: Mass spectrometry in structural biology. 相似文献
13.
Hamuro Y Zawadzki KM Kim JS Stranz DD Taylor SS Woods VL 《Journal of molecular biology》2003,327(5):1065-1076
cAMP-dependent protein kinase (cAPK) is a key component in numerous cell signaling pathways. The cAPK regulatory (R) subunit maintains the kinase in an inactive state until cAMP saturation of the R-subunit leads to activation of the enzyme. To delineate the conformational changes associated with cAPK activation, the amide hydrogen/deuterium exchange in the cAPK type IIbeta R-subunit was probed by electrospray mass spectrometry. Three states of the R-subunit, cAMP-bound, catalytic (C)-subunit bound, and apo, were incubated in deuterated water for various lengths of time and then, prior to mass spectrometry analysis, subjected to digestion by pepsin to localize the deuterium incorporation. High sequence coverage (>99%) by the pepsin-digested fragments enables us to monitor the dynamics of the whole protein. The effects of cAMP binding on RIIbeta amide hydrogen exchange are restricted to the cAMP-binding pockets, while the effects of C-subunit binding are evident across both cAMP-binding domains and the linker region. The decreased amide hydrogen exchange for residues 253-268 within cAMP binding domain A and for residues 102-115, which include the pseudosubstrate inhibitory site, support the prediction that these two regions represent the conserved primary and peripheral C-subunit binding sites. An increase in amide hydrogen exchange for a broad area within cAMP-binding domain B and a narrow area within cAMP-binding domain A (residues 222-232) suggest that C-subunit binding transmits long-distance conformational changes throughout the protein. 相似文献
14.
Wang L Lane LC Smith DL 《Protein science : a publication of the Protein Society》2001,10(6):1234-1243
Amide hydrogen exchange and mass spectrometry have been used to study the pH-induced structural changes in the capsid of brome mosaic virus (BMV). Capsid protein was labeled in a structurally sensitive way by incubating intact viral particles in D(2)O at pH 5.4 and 7.3. Deuterium levels in the intact coat protein and its proteolytic fragments were determined by mass spectrometry. The largest deuterium increases induced by structural alteration occurred in the regions around the quasi-threefold axes, which are located at the center of the asymmetric unit. The increased levels of deuterium indicate loosening of structure in these regions. This observation confirms the previously proposed swelling model for BMV and cowpea chlorotic mottle virus (CCMV) and is consistent with the structure of swollen CCMV recently determined by cryo-electron microscopy and image reconstruction. Structural changes in the extended N- and C-terminal arms were also detected and compared with the results obtained with other swollen plant viruses. This study demonstrates that protein fragmentation/amide hydrogen exchange is a useful tool for probing structural changes in viral capsids. 相似文献
15.
J A Demmers E van Duijn J Haverkamp D V Greathouse R E Koeppe A J Heck J A Killian 《The Journal of biological chemistry》2001,276(37):34501-34508
Nano-electrospray ionization mass spectrometry (ESI-MS) was used to analyze hydrogen/deuterium (H/D) exchange properties of transmembrane peptides with varying length and composition. Synthetic transmembrane peptides were used with a general acetyl-GW(2)(LA)(n)LW(2)A-ethanolamine sequence. These peptides were incorporated in large unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The vesicles were diluted in buffered deuterium oxide, and the H/D exchange after different incubation times was directly analyzed by means of ESI-MS. First, the influence of the length of the hydrophobic Leu-Ala sequence on exchange behavior was investigated. It was shown that longer peptide analogs are more protected from H/D exchange than expected on the basis of their length with respect to bilayer thickness. This is explained by an increased protection from the bilayer environment, because of stretching of the lipid acyl chains and/or tilting of the longer peptides. Next, the role of the flanking tryptophan residues was investigated. The length of the transmembrane part that shows very slow H/D exchange was found to depend on the exact position of the tryptophans in the peptide sequence, suggesting that tryptophan acts as a strong determinant for positioning of proteins at the membrane/water interface. Finally, the influence of putative helix breakers was studied. It was shown that the presence of Pro in the transmembrane segment results in much higher exchange rates as compared with Gly or Leu, suggesting a destabilization of the alpha-helix. Tandem MS measurements suggested that the increased exchange takes place over the entire transmembrane segment. The results show that ESI-MS is a convenient technique to gain detailed insight into properties of peptides in lipid bilayers by monitoring H/D exchange kinetics. 相似文献
16.
Conformational changes and protein dynamics play an important role in the catalytic efficiency of enzymes. Amide H/D exchange mass spectrometry (H/D exchange MS) is emerging as an efficient technique to study the local and global changes in protein structure and dynamics due to ligand binding, protein activation-inactivation by modification, and protein-protein interactions. By monitoring the selective exchange of hydrogen for deuterium along a peptide backbone, this sensitive technique probes protein motions and structural elements that may be relevant to allostery and function. In this report, several applications of H/D exchange MS are presented which demonstrate the unique capability of amide hydrogen/deuterium exchange mass spectrometry for examining dynamic and structural changes associated with enzyme catalysis. 相似文献
17.
Solid-state hydrogen/deuterium exchange (ssHDX) with electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopy were used to assess protein conformation in amorphous solids. Myoglobin, lysozyme, β-lactoglobulin, ribonuclease A, E-cadherin 5, and concanavalin A were co-lyophilized with carbohydrates (trehalose, raffinose, and dextran 5000), linear polymers (polyvinyl alcohol and polyvinyl pyrrolidone) or guanidine hydrochloride (negative control). For ssHDX, samples were exposed to D2O vapor at 33% relative humidity and room temperature, and then reconstituted at low temperature (4°C) and pH 2.5 and analyzed by ESI-MS. Peptic digestion of selected proteins was used to provide region-specific information on exchange. FTIR spectra were acquired using attenuated total reflectance. FTIR and ssHDX of intact proteins showed preservation of structure by raffinose and trehalose, as indicated by FTIR band intensity and protection from exchange. ssHDX of peptic digests further indicated that these protective effects were not exerted uniformly along the protein sequence but were observed primarily in α-helical regions, a level of structural resolution not afforded by FTIR. The results thus demonstrate the utility of HDX with ESI-MS for analyzing protein conformation in amorphous solid samples. 相似文献
18.
We utilized electrospray ionization mass spectrometry (ESI-MS) and hydrogen-deuterium exchange (HX) to detect unfolding of hen egg white lysozyme during salt-induced precipitation. Deuterated lysozyme was dissolved in protonated buffer at pH 2.16 and precipitated with ammonium sulfate, sodium chloride, and potassium thiocyanate. ESI-MS was used to detect mass differences in lysozyme due to the loss of deuterons for solvent protons, providing insight on the conformational history of the protein during the labeling experiment. Precipitation with ammonium sulfate and sodium chloride did not unfold lysozyme, consistent with the known stabilizing effects of kosmotropic salts. Potassium thiocyanate, an aggressive chaotrope, was an effective precipitant at 0.2 M, but also disrupted lysozyme structure and caused the formation of precipitate fractions that did not readily redissolve into aqueous solution without the use of a chemical denaturant. Precipitation with 1.0 M thiocyanate resulted in faster rates of unfolding and larger amounts of the insoluble precipitate. The unfolding kinetics were biphasic, exhibiting a slow phase after a few hours that presumably reflected a smaller propensity for lysozyme to unfold in the precipitated state. Bimodal mass distributions in the ESI-MS spectra for the thiocyanate precipitates indicate two states for lysozyme in this system, a native and a molten globule-like partially unfolded state. ESI-MS analysis of the insoluble precipitates indicated that they consisted primarily of protein molecules that had unfolded. Investigation of the HX behavior of lysozyme in a KSCN solution at low protein concentrations confirmed the destabilizing effect of the salt on the protein structure, even when there was almost no solid phase present. The HX/ESI-MS results provide insight into the mechanism combining precipitation and denaturation for such a system, both in terms of obtaining quantitative kinetic and stability information and the identification of the conformers present. 相似文献
19.
We show here that the interaction between the urokinase-type plasminogen activator and its receptor, which plays a critical role in cell invasion, is regulated by heparan sulfate present on the cell surface and in the extracellular matrix. Heparan sulfate oligomers showing a composition close to the dimeric repeats of heparin (glucosamine-NSO(3)(6-OSO(3))-iduronic acid(2-OSO(3))) n = 5 and n > 5, where iduronic acid may alternate with glucuronic acid, exhibit affinity for urokinase plasminogen activator and confer specificity on urokinase/urokinase receptor interaction. Cell surface clearance of heparan sulfate reduces the affinity of such interaction with a parallel decrease of specific urokinase binding in the presence of an unaltered expression of receptor. Transfection of human urokinase plasminogen activator receptor in normal Chinese hamster ovary fibroblasts and in Chinese hamster ovary cells defective for the synthesis of sulfated glycosaminoglycans results in specific urokinase/receptor interaction only in nondefective cells. Heparan sulfate/urokinase and receptor/urokinase interactions exhibit similar K(d) values. We concluded that heparan sulfate functions as an adaptor molecule that confers specificity on urokinase/receptor binding. 相似文献
20.
Lee T Hoofnagle AN Kabuyama Y Stroud J Min X Goldsmith EJ Chen L Resing KA Ahn NG 《Molecular cell》2004,14(1):43-55
Protein interactions between MAP kinases and substrates, activators, and scaffolding proteins are regulated by docking site motifs, one containing basic residues proximal to Leu-X-Leu (DEJL) and a second containing Phe-X-Phe (DEF). Hydrogen exchange mass spectrometry was used to identify regions in MAP kinases protected from solvent by docking motif interactions. Protection by DEJL peptide binding was observed in loops spanning beta7-beta8 and alphaD-alphaE in p38alpha and ERK2. In contrast, protection by DEF binding to ERK2 revealed a distinct hydrophobic pocket for Phe-X-Phe binding formed between the P+1 site, alphaF helix, and the MAP kinase insert. In inactive ERK2, this pocket is occluded by intramolecular interactions with residues in the activation lip. In vitro assays confirm the dependence of Elk1 and nucleoporin binding on ERK2 phosphorylation, and provide a structural basis for preferential involvement of active ERK in substrate binding and nuclear pore protein interactions. 相似文献