首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five individual DNA-cytosine methylases differing in pI (isoelectric point) values are present in Shigella sonnei 47-cells. The sequence specificity of each of those was determined 'in vitro' by a highly efficient combined approach that included pyrimidine tract (isostic) analysis, identification of the immediate neighbourhood of the methylated base within the recognition sequence and the calculation method. The enzyme with pI 5.3 (MSso5.3) is the counterpart of the RSso 47 II in the Sso 47 II restriction-modification system and methylates the internal cytosine residue of the 'palindromic' 5'-C-C-N-G-G-3' sequence. The enzymes with pI 6.2 (MSso6.2) and 7.4 (MSso7.4) exhibit identical specificity upon methylation of the 'palindromic' 5'-Py-C-N-G-Pu-3' sequence, but differ in the pI values of the proteins. The enzyme with pI 4.2 (MSso4.2) recognizes the unique tetranucleotide 5'-C-C-C-C-3' sequence and methylates the second cytosine residue at the 5'-end of the sequence. The enzyme with pI 8.4 (MSso8.4) methylates the central cytosine residue within the degenerative trinucleotide 5'-(PuC)-C-C-3' sequence. MSso5.3, MSso6.2, and MSso7.4 are presumed to belong to the 'family' of sequence-specific (Eco RII-like) enzymes. These DNA-cytosine methylases are likely to be evolutionary related to Eco RII and to have undergone a sufficient genetic drift so as to recognize similar (but more degenerative) nucleotide sequences.  相似文献   

2.
A procedure for separation of oligopurine blocks of different length and composition by two-dimensional thin layer chromatography on DEAE-cellulose plates has been developed. This method allows a comparative analysis of the purine isostich content in the DNAs of various origin. In case of methylated DNA, the method permits to compare the substrate specificity of different enzymes responsible for the adenine residue methylation in the DNA. In combination with enzymatic treatment of labeled methylated isostichs, the method described can be used for the deciphering of the methylated sequences as well as for constructing, in a number of cases, the recognition site of adenine-specific methylases. Thus, it was demonstrated that methylase SsoI recognizes the 5...G-A-A-T-T-C ... 3' sequence and methylates its adenine residue nearest to the 5'-end.  相似文献   

3.
A complex approach involving isoplith analysis, enzymatic treatment of methylated isopliths and a computer analysis of experimental data has been used for determining site specificity of six methylases from Shigella sonnei 47 cells termed according to their specificity for a nitrous base and pI as MC4.2, MC5.3, MC6.2, MC7.4, MC8.4 and MA9.5. It has been found that the recognition site of MA9.5 is a palyndrome six-member structure of the 5'...GAATTC...3' type and that this enzyme is an isometimer with respect to MEcoRI. It has been demonstrated for the first time for methylases that the recognition site of MC4.2 is represented by a non-symmetrical four-member sequence, 5'...NCCCCN...3' characterized by unique blocking of cytosines. MC8.4 possesses a broad specificity of substrate recognition and methylates the cytosine residue within the composition of the non-symmetrical unique sequence 5'...N (C/Pu) CCN...3', whose 5'-terminal base is depleted in three nucleotides. MC5.3 methylates the 3'-terminal cytosine residue within the composition of the pentanucleotide palindrome recognition site, 5'...CCNGG...3'. MC6.2 and MC7.4 possess identical pentanucleotide recognition sites of 5'...(Py)CNG(Pu)...3', but are distinguished in pI. The latter finding has been shown for the first time for different methylases within one strain.  相似文献   

4.
In contrast to the complex sequence specificities of the prokaryotic DNA methylating systems, the mammalian machinery identified thus far methylates cytosine residues within the context of a 5'-CG-3' dinucleotide. To explore the possibility that cytosine residues that do not precede guanine may be independently methylated in mammalian DNA, we have examined a region of the human myogenic gene, Myf-3, which is not targeted by the methylating system that methylates 5'-CG-3' dinucleotides. Our investigations have revealed cytosine methylation within the 5'-CCTGG-3' pentanucleotides specified by the 0.8-kb Myf-3 probe. We have also found that in DNA from neoplastic cells, in which 5'-CG-3' dinucleotides within Myf-3 become abnormally hypermethylated, cytosine residues within 5'-CCTGG-3' pentanucleotides are not methylated. Moreover, methylation of 5'-CCTGG-3' pentanucleotides was not detected within the closely related Myf-4 gene, which is normally 5'-CG-3' hypermethylated. These findings indicate the existence of a system that methylates 5'-CCTGG-3' pentanucleotides independently of the system that methylates cytosine residues within 5'-CG-3' dinucleotides. It is possible that the 5'-CCTGG-3' methylating system influences the fate of foreign integrated DNA.  相似文献   

5.
H Deissler  B Gen    W Doerfler 《Nucleic acids research》1995,23(21):4227-4228
The isoschizomeric restriction endonucleases Fnu4HI and BsoFI cleave DNA at 5'-GCdecreasesNGC-3' sequences. Fnu4HI has been shown to be inhibited by 5'-CG-3'methylation in the sequences 5'-GmCGGC-3' or 5'-GCGGmCG-3'. We have now investigated the methylation sensitivity of BsoFI by testing its activity on plasmid DNA 5'-CG-3' methylated with the M.SssI DNA methyltransferase or on synthetic (CGG)n repetitive oligodeoxyribonucleotides which have been partly or completely C methylated. The data demonstrate that BsoFI cannot cleave at its recognition sequence when it is completely 5'-CG-3' methylated. These enzymes have proven to be useful in analyses of the methylation status in (CGG)n repeats of the human genome.  相似文献   

6.
The methylcytosine-containing sequences in the DNA of Bacillus subtilis 168 Marburg (restriction-modification type BsuM) were determined by three different methods: (i) examination of in vivo-methylated DNA by restriction enzyme digestion and, whenever possible, analysis for methylcytosine at the 5' end; (ii) methylation in vitro of unmethylated DNA with B. subtilis DNA methyltransferase and determination of the methylated sites; and (iii) the methylatability of unmethylated DNA by B. subtilis methyltransferase after potential sites have been destroyed by digestion with restriction endonucleases. The results obtained by these methods, taken together, show that methylcytosine was present only within the sequence 5'-TCGA-3'. The presence of methylcytosine at the 5' end of the DNA fragments generated by restriction endonuclease AsuII digestion and the fact that in vivo-methylated DNA could not be digested by the enzyme XhoI showed that the recognition sequences of these two enzymes contained methylcytosine. As these two enzymes recognized a similar sequence containing a 5' pyrimidine (Py) and a 3' purine (Pu), 5'-PyTCGAPu-3', the possibility that methylcytosine is present in the complementary sequences 5'-TTCGAG-3' and 5'-CTCGAA-3' was postulated. This was verified by the methylation in vitro, with B. subtilis enzyme, of a 2.6-kilobase fragment of lambda DNA containing two such sites and devoid of AsuII or XhoI recognition sequences. By analyzing the methylatable sites, it was found that in one of the two PyTCGAPu sequences, cytosine was methylated in vitro in both DNA strands. It is concluded that the sequence 5'-PyTCGAPu-3' is methylated by the DNA methyltransferase (of cytosine) of B. subtilis Marburg.  相似文献   

7.
A method for detecting Type II modification methylases and determining their methylation site by assaying the ability of methylated DNA to be cleaved by heterologous restriction enzymes is described and applied to the isolation of the restriction modification methylases from Thermus thermophilus HB8, Thermus aquaticus YTI and Caryophanon latum L. M.TaqI is shown to have a methylation specificity identical to M.ThI (TCGmeA). M.ClaI methylates at adenine and protects a subset of TthI sites indicating that it methylates the sequence ATCGmeAT. Methylation by M.ThI also protects against cleavage by SalI, XhoI and at some HindII, AccI and MboI sites.  相似文献   

8.
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.  相似文献   

9.
The HpaII methylase (M.HpaII) recognizes the sequence CCGG and methylates the inner cytosine residue. The MspI methylase (MspI) recognizes the same sequence but methylates the outer cytosine residue. Both methylases have the usual architecture of 10 well-conserved motifs surrounding a variable region, responsible for sequence specific recognition, that is quite different in the two methylases. We have constructed hybrids between these two methylases and studied their methylation properties. A hybrid containing the variable region and C-terminal sequences from M.MspI methylates the outer cytosine residue. A second hybrid identical to the first except that the variable region derives from the M.HpaII methylates the inner cytosine residue. Thus the choice of base to be methylated within the recognition sequence is determined by the variable region.  相似文献   

10.
The DNA methylation is a post-replicative event that provides secondary information to that formed by DNA. Addition of this information involves DAM methyltransferase, which methylates DNA on specific sites (5'-GATC-3'). This modification of DNA may play a role in regulating various processes in eukaryote or prokaryote cells. It was well understood that deoxyadenosine methyltransferase (DAM) methylates the adenine of the GATC sequence. Following DNA replication, however, DNA is transiently hemimethylated, and the new strand is then methylated by DAM. In Escherichia coli, removing the dam gene produces several phenotypes indicating multiple functions of methylation: (i) modulation of gene expression, (ii) DNA repair, (iii) initiation of replication, and (iv) stabilising the chromosome.  相似文献   

11.
C Lange  C Wild    T A Trautner 《The EMBO journal》1996,15(6):1443-1450
In previous work on DNA-(cytosine-C5)-methyltransferases (C5-MTases), domains had been identified which are responsible for the sequence specificity of the different enzymes (target-recognizing domains, TRDs). Here we have analyzed the DNA methylation patterns of two C5-MTases containing reciprocal chimeric TRDs, consisting of the N- and C-terminal parts derived from two different parental TRDs specifying the recognition of 5'-CC(A/T)GG-3' and 5'-GCNGC-3'. Sequences recognized by these engineered MTases were non-symmetrical and degenerate, but contained at their 5' part a consensus sequence which was very similar to the 5' part of the target recognized by the parental TRD which contributed the N-terminal moiety of the chimeric TRD. The results are discussed in connection with the present understanding of the mechanism of DNA target recognition by C5-MTases. They demonstrate the possibility of designing C5-MTases with novel DNA methylation specificities.  相似文献   

12.
Two different cytosine DNA-methylases, NI and GII, are present in Escherichia coli SK. The GII methylase recognizes the five-member symmetric sequence: 5'...NpCpCpApGpGpN...3'. This sequence is identical with the recognition site of the hsp II type determined by RII plasmid but, in contrast to RII methylase, the GII enzyme methylates cytosine located on the 5' side of the site. By analogy with the isoshizomery of the restricting endonucleases, RII and GII DNA methylaeses may be called isomethymers which recognize the same site but methylate different bases. Since the phage of the SK and hsp II phenotypes is effectively restricted in respective cells it may be assumed that the isomethymeric modification does not provide any protection against the corresponding restrictases. NI methylase recognizes the five-member symmetric site which represents an inverted sequence of the GII site: 5'...NpGpGpApCpCpN...3'. In this case cytosine at the 3'-end of the recognition site is methylated.  相似文献   

13.
Arthrobacter viscosus DNA was resistance to digestion by restriction enzymes that are sensitive to methylation of the cytosine residue (but not of adenine) within the GATC recognition sequence. Restriction enzymes sensitive to methylation of cytosine in other recognition sequences were not affected. A. viscosus DNA thus appeared to contain methylated cytosine specifically at the GATC sequence.  相似文献   

14.
H Sagawa  A Ohshima    I Kato 《Nucleic acids research》1995,23(13):2367-2370
To develop restriction enzymes that are useful for genome analysis, we previously performed screening and isolated Sse8387I from Streptomyces sp. strain 8387. Sse8387I is a restriction enzyme that recognizes 5'-CCTGCA/GG-3' and cleaves DNA at the site shown by the diagonal (Nucleic Acid Res., 18, 5637-5640). The present study evaluated the effects of methylation that is important when Sse8387I is used for genome analysis. Sse8387I lost cleavage activity after methylation of adenine or methylation of cytosine at any site in the recognition sequence. However, the recognition sequence of Sse8387I contains no CG sequence, which is the mammalian methylation sequence. In addition, we evaluated the effects of methylation of CG at sites other than the recognition sequence. The cleavage activity of Sse8387I was maintained even when CG sequences were present immediately before or after, or near the recognition sequence, and cytosine was methylated. These results suggest that CG methylation does not affect the cleavage activity of Sse8387I. Therefore, Sse8387I seems to be very useful for mammalian genome analysis.  相似文献   

15.
The somatic replication of DNA methylation   总被引:66,自引:0,他引:66  
M Wigler  D Levy  M Perucho 《Cell》1981,24(1):33-40
We have tested the hypothesis that DNA methylation patterns are replicated in the somatic cells of vertebrates. Using M-Hpa II, the modification enzyme from Haemophilus parainfluenzae which methylates the internal cytosine residues in the sequence 5'CCGG 3' GGCC, we methylated bacteriophage phi X174 RF DNA and the cloned chicken thymidine kinase (tk) gene in vitro and then introduced these DNAs and unmethylated controls into tk- cultured mouse cells by DNA-mediated transformation. Twenty-five cell generations later, the state of methylation of transferred DNA was examined by restriction endonuclease analysis and blot hybridization. We conclude that methylation at Hpa II sites is replicated by these cultured cells but not with 100% fidelity. We have also noted that methylation of the cloned chicken tk gene decreases its apparent transformation efficiency relative to unmethylated molecules.  相似文献   

16.
The behaviour of methylation and restriction enzymes of Staphylococcus aureus 6782 during their isoelectrofocusing on ampholinese was studied. It was found that the RSau 6782 isoenzyme is represented by two isoforms, RI and RII, with isoelectric points of 4.2 and 7.9, respectively. Data from isoelectrofocusing analysis suggest that RI and R II are devoid of relaxed specificity found in the original preparation. In was shown that the relaxed specificity is also inherent in the isoschisomeric enzyme, RSau3A. Isoelectrofocusing of the original preparation RSau3A, as in case with RSau 6782, allows the identification of two peaks, RI and RII, and the separation of each peak from the "trace" activity. Multiple forms of DNA-methylase of the Sau 6782 type are represented by four isoenzymes possessing acidic properties. The method allows one to single out from the total methylase pool a modifying methylase with p1 (3.9) is close to that of RSau 6782 and thus the enzyme cannot serve for correct separation of restriction and methylation enzymes of Sau 6782.  相似文献   

17.
The maintenance methyltransferase M.EcoKI recognizes the bipartite DNA sequence 5'-AACNNNNNNGTGC-3', where N is any nucleotide. M.EcoKI preferentially methylates a sequence already containing a methylated adenine at or complementary to the underlined bases in the sequence. We find that the introduction of a single-stranded gap in the middle of the non-specific spacer, of up to 4 nt in length, does not reduce the binding affinity of M.EcoKI despite the removal of non-sequence-specific contacts between the protein and the DNA phosphate backbone. Surprisingly, binding affinity is enhanced in a manner predicted by simple polymer models of DNA flexibility. However, the activity of the enzyme declines to zero once the single-stranded region reaches 4 nt in length. This indicates that the recognition of methylation of the DNA is communicated between the two methylation targets not only through the protein structure but also through the DNA structure. Furthermore, methylation recognition requires base flipping in which the bases targeted for methylation are swung out of the DNA helix into the enzyme. By using 2-aminopurine fluorescence as the base flipping probe we find that, although flipping occurs for the intact duplex, no flipping is observed upon introduction of a gap. Our data and polymer model indicate that M.EcoKI bends the non-specific spacer and that the energy stored in a double-stranded bend is utilized to force or flip out the bases. This energy is not stored in gapped duplexes. In this way, M.EcoKI can determine the methylation status of two adenine bases separated by a considerable distance in double-stranded DNA and select the required enzymatic response.  相似文献   

18.
《Gene》1998,206(1):63-67
Mouse ES cells with a null mutation of the known DNA methyltransferase retain some residual DNA methylation and can methylate foreign sequences de novo. We have used bisulfite genomic sequencing to examine the sequence specificity and distributions of methylation of a hypermethylated CG island sequence, mouse A-repeats. There were 13 CG dinucleotides in the region examined, 12 of which were methylated to variable extents in all DNAs. We found that: (1) there is considerable residual DNA methylation in ES cells lacking the known DNA methyltransferase (29% of normal methylation in the complete knockout ES DNA); (2) this other activity methylates at exactly the same CG sites as the major methyltransferase; and (3) differences in the distribution of methylated sites between A-repeats in these DNAs are consistent with this other activity methylating in a random de novo fashion. Also, the lack of any methylation in non-CG sites argues that, in other studies where non-CG methylation sites have been found by bisulfite sequencing, detection of such sites of non-CG methylation is not an inherent artifact in this methodology.  相似文献   

19.
Site specific endonuclease from Fusobacterium nucleatum.   总被引:17,自引:12,他引:5       下载免费PDF全文
Four different isolates of Fusobacterium nucleatum (A,C,D and E) contain restriction endonucleases of differing specificity. Whilst many of the endonucleases are isochizomers of known enzymes, two novel activities are Fnu DII which recognizes and cleaves the sequence 5'-CGCT-3'/3'-GCGC-5' AND Fnu EI which recognizes and cleaves the sequence 5'-GATC-3'/3'-CTAG-5' irrespective of the extent of methylation of the adenine residues.  相似文献   

20.
Two DNA methylase activities of Escherichia coli C, the mec (designates DNA-cytosine-methylase gene, which is also designated dcm) and dam gene products, were physically separated by DEAE-cellulose column chromatography. The sequence and substrate specificity of the two enzymes were studied in vitro. The experiments revealed that both enzymes show their expected sequence specificity under in vitro conditions, methylating symmetrically on both DNA strands. The mec enzyme methylates exclusively the internal cytosine residue of CCATGG sequences, and the dam enzyme methylates adenine residues at GATC sites. Substrate specificity experiments revealed that both enzymes methylate in vitro unmethylated duplex DNA as efficiently as hemimethylated DNA. The results of these experiments suggest that the methylation at a specific site takes place by two independent events. A methyl group in a site on one strand of the DNA does not facilitate the methylation of the same site on the opposite strand. With the dam methylase it was found that the enzyme is incapable of methylating GATC sites located at the ends of DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号