首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Insulin secretion from the pancreatic beta-cell is regulated principally by the ambient concentration of glucose. However, the molecular and cellular mechanisms underlying the stimulus-secretion coupling of glucose-stimulated insulin secretion (GSIS) remain only partially understood. Emerging evidence from multiple laboratories suggests key regulatory roles for GTP-binding proteins (G-proteins) in the cascade of events leading to GSIS. This class of signaling proteins undergo a series of requisite post-translational modifications (e.g., prenylation) at their C-terminal cysteines, which appear to be necessary for their targeting to respective membranous sites for optimal interaction with their respective effector proteins. This communication represents a perspective on potential regulatory roles for protein prenylation steps (i.e., protein farnesylation and protein geranylgeranylation) in GSIS from the islet beta cell. Possible consequences of protein prenylation and potential mechanisms underlying glucose-induced regulation of prenylation, specifically in the context of GSIS are also discussed.  相似文献   

2.
We recently described novel regulatory roles for protein histidine phosphorylation of key islet proteins (e.g., nucleoside diphosphate kinase and succinyl thiokinase) in insulin secretion from the islet beta-cell (Kowluru A. Diabetologia 44: 89-94, 2001; Kowluru A, Tannous M, and Chen HQ. Arch Biochem Biophys 398: 160-169, 2002). In this context, we also characterized a novel, ATP- and GTP-sensitive protein histidine kinase in isolated beta-cells that catalyzed the histidine phosphorylation of islet (endogenous) proteins as well as exogenously added histone 4, and we implicated this kinase in the activation of islet endogenous G proteins (Kowluru A. Biochem Pharmacol 63: 2091-2100, 2002). In the present study, we describe abnormalities in ATP- or GTP-mediated histidine phosphorylation of nucleoside diphosphate kinase in islets derived from the Goto-Kakizaki (GK) rat, a model for non-insulin-dependent diabetes. Furthermore, we provide evidence for a marked reduction in the activities of ATP- or GTP-sensitive histidine kinases in GK rat islets. On the basis of these observations, we propose that alterations in protein histidine phosphorylation could contribute toward insulin-secretory abnormalities demonstrable in the diabetic islet.  相似文献   

3.
Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.  相似文献   

4.
5.
Gohla A  Klement K  Nürnberg B 《Autophagy》2007,3(4):393-395
Compelling evidence suggests that the heterotrimeric G protein G(i3) specifically transmits the antiautophagic effects of insulin and amino acids in the liver. This points to a previously unrecognized cross talk between the insulin receptor tyrosine kinase and G(i3). Interestingly, G(i3) is localized not only to plasma membranes but also to membranes of the autophagosomal compartment. Furthermore, as part of insulin's or phenylalanine's actions to inhibit autophagy, G(i3) is redistributed away from autophagosomes. Therefore, endomembrane-associated rather than plasma membrane-localized G(i3) may serve as the target of insulin's endocrine and metabolic actions. We therefore propose that the function and regulation of organelle-associated heterotrimeric G proteins may be different from their roles at the plasma membrane where they act as signal transducers of seven-transmembrane receptors. Here, we discuss recent findings and propose a function for G(i3) in mTOR-dependent signaling pathways. We hypothesize that G(i) family members may have tissue-specific roles in the regulation of autophagy under different physiological and pathological conditions.  相似文献   

6.
Glucose-stimulated insulin secretion and beta-cell growth are important facets of pancreatic islet beta-cell biology. As a result, factors that modulate these processes are of great interest for the potential treatment of Type 2 diabetes. Here, we present evidence that the heterotrimeric G protein G(z) and its effectors, including some previously thought to be confined in expression to neuronal cells, are present in pancreatic beta-cells, the largest cellular constituent of the islets of Langerhans. Furthermore, signaling pathways upon which G alpha(z) impacts are intact in beta-cells, and G alpha(z) activation inhibits both cAMP production and glucose-stimulated insulin secretion in the Ins-1(832/13) beta-cell-derived line. Inhibition of glucose-stimulated insulin secretion by prostaglandin E (PGE1) is pertussis-toxin insensitive, indicating that other G alpha(i) family members are not involved in this process in this beta-cell line. Indeed, overexpression of a selective deactivator of G alpha(z), the RGS domain of RGSZ1, blocks the inhibitory effect of PGE1 on glucose-stimulated insulin secretion. Finally, the inhibition of glucose-stimulated insulin secretion by PGE1 is substantially blunted by small interfering RNA-mediated knockdown of G alpha(z) expression. Taken together, these data strongly imply that the endogenous E prostanoid receptor in the Ins-1(832/13) beta-cell line couples to G(z) predominantly and perhaps even exclusively. These data provide the first evidence for G(z) signaling in pancreatic beta-cells, and identify an endogenous receptor-mediated signaling process in beta-cells that is dependent on G alpha(z) function.  相似文献   

7.
Recent studies from multiple laboratories, including our own, provided fresh insights into the contributory roles for GTP-binding proteins (G-proteins) in glucose-stimulated insulin secretion (GSIS) from the islet β cell. However, the precise mechanisms underlying the activation of this class of signaling proteins by insulin secretagogues remain only partially understood. We recently proposed that nm23/nucleoside diphosphate kinase (NDPK) catalyzes an alternate, non-receptor-dependent activation of islet endogenous G-proteins. In further support of this proposal, we report, herein, that overexpression of wild type (WT) nm23-H1 mutant in INS cells markedly potentiated GSIS. However, an inactive mutant of nm23-H1(H118F), which is deficient in histidine kinase and NDPK activities, was considerably less effective in potentiating GSIS from these cells, suggesting that both of these activities may be relevant for the potentiating effects of nm23-H1. Potential significance of these findings in relation to contributory roles for nm23/NDPK-like enzymes in the stimulus-secretion coupling of GSIS is discussed.  相似文献   

8.
《FEBS letters》2014,588(8):1278-1287
Multi-cellular systems require complex signaling mechanisms for proper tissue function, to mediate signaling between cells in close proximity and at distances. This holds true for the islets of Langerhans, which are multicellular micro-organs located in the pancreas responsible for glycemic control, through secretion of insulin and other hormones. Coupling of electrical and metabolic signaling between islet β-cells is required for proper insulin secretion and effective glycemic control. β-cell specific coupling is established through gap junctions composed of connexin36, which results in coordinated insulin release across the islet. Islet connexins have been implicated in both Type-1 and Type-2 diabetes; however a clear link remains to be determined. The goal of this review is to discuss recent discoveries regarding the role of connexins in regulating insulin secretion, the regulation of connexins within the islet, and recent studies which support a role for connexins in diabetes. Further studies which investigate the regulation of connexins in the islet and their role in diabetes may lead to novel diabetes therapies which regulate islet function and β-cell survival through modulation of gap junction coupling.  相似文献   

9.
10.
11.
A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands (57kDa and 54kDa) were identified in intact islets that had been labelled with [32P]Pi. Islets prelabelled with [32P]Pi and incubated with 28 mM-glucose secreted significantly more insulin and had greater incorporation of radioactivity into the 54 kDa protein than did islets incubated under basal conditions in the presence of 5 mM-glucose. Thus the potential importance of the phosphorylation of these proteins in the regulation of insulin secretion is indicated both by activation of the protein kinase activity by physiological concentrations of free Ca2+ and by correlation of the phosphorylation of the substrates with insulin secretion in intact islets. Experiments undertaken to identify the endogenous substrates indicated that this calmodulin-dependent protein kinase may phosphorylate the alpha- and beta-subunits of tubulin. These findings suggest that Ca2+-stimulated phosphorylation of islet-cell tubulin via a membrane-bound calmodulin-dependent protein kinase may represent a critical step in the initiation of insulin secretion from the islets of Langerhans.  相似文献   

12.
Sherrill JD  Miller WE 《Life sciences》2008,82(3-4):125-134
Members of the herpesvirus family, including human cytomegalovirus (HCMV) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), encode G protein-coupled receptor (GPCR) homologs, which strongly activate classical G protein signal transduction networks within the cell. In animal models of herpesvirus infection, the viral GPCRs appear to play physiologically important roles by enabling viral replication within tropic tissues and by promoting reactivation from latency. While a number of studies have defined intracellular signaling pathways activated by herpesviral GPCRs, it remains unclear if their physiological function is subjected to the process of desensitization as observed for cellular GPCRs. G protein-coupled receptor kinases (GRK) and arrestin proteins have been recently implicated in regulating viral GPCR signaling; however, the role that these desensitization proteins play in viral GPCR function in vivo remains unknown. Here, we review what is currently known regarding viral GPCR desensitization and discuss potential biological ramifications of viral GPCR regulation by the host cell desensitization machinery.  相似文献   

13.
Long-chain fatty acids (e.g. arachidonic acid) have been implicated in physiological control of insulin secretion. We previously reported histidine phosphorylation of at least two islet proteins (e.g., NDP kinase and the beta subunit of trimeric G-proteins), and suggested that such a signalling step may have regulatory roles in beta cell signal transduction, specifically at the level of G-protein activation. Since our earlier findings also indicated potential regulation by long-chain fatty acids of islet G-proteins, we undertook the current study to verify putative regulation, by fatty acids, of protein histidine phosphorylation of NDP kinase and Gbeta subunit in normal rat islets. The phosphoenzyme formation of NDP kinase was stimulated by various fatty acids in the following rank order: linoleic acid > arachidonic acid > oleic acid > palmitic acid = stearic acid = control. Furthermore, the catalytic activity of NDP kinase was stimulated by these fatty acids in the rank order of: oleic acid > arachidonic acid > linoleic acid > palmitic acid = stearic acid = control. Arachidonic acid methyl ester, an inactive analog of arachidonic acid, did not significantly affect either the phosphoenzyme formation or the catalytic activity of NDP kinase. Interestingly, arachidonic acid exerted dual effects on the histidine phosphorylation of beta subunit; it significantly stimulated the phosphorylation at 33 microM beyond which it was inhibitory. Together, these findings identify additional loci (e.g., NDP kinase and Gbeta subunit) at which unsaturated, but not saturated, fatty acids could exert their intracellular effects leading to exocytotic secretion of insulin.  相似文献   

14.
Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β‐cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β‐cell function, also occurs in primary cilia. Whereas voltage‐gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β‐cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state. Birth Defects Research (Part C) 102:126–138, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
16.
Based on the phenotype of the activin-like kinase-7 (ALK7)-null mouse, activins A and B have been proposed to play distinct roles in regulating pancreatic islet function and glucose homeostasis, with activin A acting to enhance islet function and insulin release while activin B antagonizes these actions. We therefore hypothesized that islets from activin B-null (BBKO) mice would have enhanced glucose-stimulated insulin secretion. In addition, we hypothesized that this enhanced islet function would translate into increased whole body glucose tolerance. We tested these hypotheses by analyzing glucose homeostasis, insulin secretion, and islet function in BBKO mice. No differences were observed in fasting glucose or insulin levels, glucose tolerance, or insulin sensitivity compared with weight-matched young or older males. Similarly, there were no significant differences in insulin secretion comparing islets from WT or BBKO males at either age. However, BBKO islets were more sensitive to activin A, myostatin (MSTN), and follistatin (FST) treatments, so that activin A and FST inhibited and MSTN enhanced glucose stimulated insulin secretion. While mean islet area and the distribution of islet areas were not different between the genotypes, islet mass, islet number, and the proportion of α-cells/islet were significantly reduced in BBKO islets. These results indicate that activin B does not antagonize activin A to influence whole body glucose homeostasis or β-cell function but does influence islet mass and proportion of α-cells/islet. Therefore, loss of activin B signaling alone does not account for the ALK7-null phenotype, but activin B may have important roles in modulating islet mass, islet number, and the cellular composition of islets.  相似文献   

17.
SAD-A kinase is a member of the AMPK-related family of kinases, which are under the control of LKB1 kinase. In the human kinome, SAD-A is most closely related to AMPK, a key energy sensor and master regulator of metabolism. In contrast to AMPK, little is known about the physiological function of the SAD-A kinase in metabolism. Recent studies using knockout mice have revealed a striking role of the SAD-A kinase in regulating dynamic functions of islet β cells, from glucose-stimulated insulin secretion (GSIS), islet β-cell size and mass, to GLP-1 response as the first tissue-specific effector of mTORC1 signaling. These studies suggest that SAD-A and AMPK kinase may function as the positive and negative regulators of mTORC1 signaling in islet β cells. Importantly, these findings have implicated SAD-A kinase as a novel drug target for the treatment of type 2 diabetes.  相似文献   

18.
The p21-activated kinase PAK1 is implicated in tumorigenesis, and efforts to inhibit PAK1 signaling as a means to induce tumor cell apoptosis are underway. However, PAK1 has also been implicated as a positive effector of mechanisms in clonal pancreatic beta cells and skeletal myotubes that would be crucial to maintaining glucose homeostasis in vivo. Of relevance, human islets of Type 2 diabetic donors contained ~80% less PAK1 protein compared with non-diabetics, implicating PAK1 in islet signaling/scaffolding functions. Mimicking this, islets from PAK1(-/-) knock-out mice exhibited profound defects in the second/sustained-phase of insulin secretion. Reiteration of this specific defect by human islets treated with the PAK1 signaling inhibitor IPA3 revealed PAK1 signaling to be of primary functional importance. Analyses of human and mouse islet beta cell signaling revealed PAK1 activation to be 1) dependent upon Cdc42 abundance, 2) crucial for signaling downstream to activate ERK1/2, but 3) dispensable for cofilin phosphorylation. Importantly, the PAK1(-/-) knock-out mice were found to exhibit whole body glucose intolerance in vivo. Exacerbating this, the PAK1(-/-) knock-out mice also exhibited peripheral insulin resistance. Insulin resistance was coupled to ablation of insulin-stimulated GLUT4 translocation in skeletal muscle from PAK1(-/-) knock-out mice, and in sharp contrast to islet beta cells, skeletal muscle PAK1 loss was underscored by defective cofilin phosphorylation but normal ERK1/2 activation. Taken together, these data provide the first human islet and mammalian in vivo data unveiling the key and crucial roles for differential PAK1 signaling in the multi-tissue regulation of whole body glucose homeostasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号