首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Divergent response to LPS and bacteria in CD14-deficient murine macrophages   总被引:10,自引:0,他引:10  
Gram-negative bacteria and the LPS constituent of their outer membranes stimulate the release of inflammatory mediators believed to be responsible for the clinical manifestations of septic shock. The GPI-linked membrane protein, CD14, initiates the signaling cascade responsible for the induction of this inflammatory response by LPS. In this paper, we report the generation and characterization of CD14-null mice in which the entire coding region of CD14 was deleted. As expected, LPS failed to elicit TNF-alpha and IL-6 production in macrophages taken from these animals, and this loss in responsiveness is associated with impaired activation of both the NF-kappaB and the c-Jun N-terminal mitogen-activated protein kinase pathways. The binding and uptake of heat-killed Escherichia coli, measured by FACS analysis, did not differ between CD14-null and wild-type macrophages. However, in contrast to the findings with LPS, whole E. coli stimulated similar levels of TNF-alpha release from CD14-null and wild-type macrophages at a dose of 10 bioparticles per cell. This effect was dose dependent, and at lower bacterial concentrations CD14-deficient macrophages produced significantly less TNF-alpha than wild type. Approximately half of this CD14-independent response appeared to be mediated by CD11b/CD18, as demonstrated by receptor blockade using neutrophil inhibitory factor. An inhibitor of phagocytosis, cytochalasin B, abrogated the induction of TNF-alpha in CD14-deficient macrophages by E. coli. These data indicate that CD14 is essential for macrophage responses to free LPS, whereas other receptors, including CD11b/CD18, can compensate for the loss of CD14 in response to whole bacteria.  相似文献   

2.
Pulmonary surfactant protein A (SP-A) plays an important part in Ab-independent host defense mechanisms of the lung. In this study we investigated how SP-A interacts with distinct serotypes of bacterial LPS and modulates LPS-elicited cellular responses. SP-A bound to rough forms but not to smooth forms of LPS. In the macrophage-like cell line U937, SP-A inhibited mRNA expression and secretion of TNF-alpha induced by smooth LPS, but rough LPS-induced TNF-alpha expression was unaffected by SP-A. When U937 cells and rat alveolar macrophages were preincubated with SP-A, smooth LPS failed to induce TNF-alpha secretion, whereas rough LPS-induced TNF-alpha secretion was modestly increased. To clarify the mechanism by which SP-A modulates LPS-elicited cellular responses, we further examined the interaction of SP-A with CD14, which is known as a major LPS receptor. Western blot analysis revealed that CD14 was one of the SP-A binding proteins isolated from solubilized U937 cells. In addition, SP-A directly bound to recombinant soluble CD14 (rsCD14). When rsCD14 was preincubated with SP-A, the binding of rsCD14 to smooth LPS was significantly reduced but the association of rsCD14 with rough LPS was augmented. These results demonstrate the different actions of SP-A upon distinct serotypes of LPS and indicate that the direct interaction of SP-A with CD14 constitutes a likely mechanism by which SP-A modulates LPS-elicited cellular responses.  相似文献   

3.
Surfactant protein A (SP-A) increases production of proinflammatory cytokines by monocytic cells, including THP-1 cells, as does lipopolysaccharide (LPS). Herein we report differences in responses to these agents. First, polymyxin B inhibits the LPS response but not the SP-A response. Second, SP-A-induced increases in tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-8 are reduced by >60% if SP-A is preincubated with Survanta (200 microgram/ml) for 15 min before addition to THP-1 cells. However, the LPS effects on TNF-alpha and IL-8 are inhibited by <20% and the effect on IL-1beta by <50%. Third, at Survanta levels of 1 mg/ml, SP-A-induced responses are reduced by >90%, and although the inhibitory effects on LPS action increase, they still do not reach those seen with SP-A. Finally, we tested whether SP-A could induce tolerance as LPS does. Pretreatment of THP-1 cells with LPS inhibits their response to subsequent LPS treatment 24 h later, including TNF-alpha, IL-1beta, and IL-8. Similar treatment with SP-A reduces TNF-alpha, but IL-1beta and IL-8 are further increased by the second treatment with SP-A rather than inhibited as with LPS. Thus, whereas both SP-A and LPS stimulate cytokine production, their mechanisms differ with respect to inhibition by surfactant lipids and in ability to induce tolerance.  相似文献   

4.
5.
Although well recognized for its anti-inflammatory effect on gene expression in stimulated monocytes and macrophages, IL-4 is a pleiotropic cytokine that has also been shown to enhance TNF-alpha and IL-12 production in response to stimulation with LPS. In the present study we expand these prior studies in three areas. First, the potentiating effect of IL-4 pretreatment is both stimulus and gene selective. Pretreatment of mouse macrophages with IL-4 for a minimum of 6 h produces a 2- to 4-fold enhancement of LPS-induced expression of several cytokines and chemokines, including TNF-alpha, IL-1alpha, macrophage-inflammatory protein-2, and KC, but inhibits the production of IL-12p40. In addition, the production of TNF-alpha by macrophages stimulated with IFN-gamma and IL-2 is inhibited by IL-4 pretreatment, while responses to both LPS and dsRNA are enhanced. Second, the ability of IL-4 to potentiate LPS-stimulated cytokine production appears to require new IL-4-stimulated gene expression, because it is time dependent, requires the activation of STAT6, and is blocked by the reversible protein synthesis inhibitor cycloheximide during the IL-4 pretreatment period. Finally, IL-4-mediated potentiation of TNF-alpha production involves specific enhancement of mRNA translation. Although TNF-alpha protein is increased in IL-4-pretreated cells, the level of mRNA remains unchanged. Furthermore, LPS-stimulated TNF-alpha mRNA is selectively enriched in actively translating large polyribosomes in IL-4-pretreated cells compared with cells stimulated with LPS alone.  相似文献   

6.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

7.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

8.
In this study we investigated the effect of acute-phase levels of C-reactive protein (CRP) on cytokine production by pulmonary macrophages in the presence or absence of pulmonary surfactant. Both human alveolar and interstitial macrophages as well as human surfactant were obtained from multiple organ donor lungs. Precultured macrophages were stimulated with LPS alone or together with IFN-gamma in the presence or absence of CRP, surfactant, and combinations. Releases of TNF-alpha and of IL-1beta to the medium were determined. We found that CRP could modulate lung inflammation in humans by decreasing the production of proinflammatory cytokines by both alveolar and interstitial macrophages stimulated with LPS alone or together with IFN-gamma. The potential interaction between CRP and surfactant phospholipids did not overcome the effect of either CRP or surfactant on TNF-alpha and IL-1beta release by lung macrophages. On the contrary, CRP and pulmonary surfactant together had a greater inhibitory effect than either alone on the release of proinflammatory cytokines by lung macrophages.  相似文献   

9.
Fulminant meningococcal sepsis (FMS) is considered the prototypical Gram-negative sepsis. Lipopolysaccharide (LPS) is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). However, there is increasing evidence that LPS is not the sole toxic element of meningococci. The aim of the present study was to determine the role of CD14 and TLR4 in pro-inflammatory cytokine induction by meningococci. To this end, cytokine induction by isolated meningoccal LPS, wild-type N. meningitidis H44/76 (LPS+-meningococci) matched for concentrations of LPS and LPS-deficient N. meningitidis H44/76lpxA (LPS - -meningococci) was studied in human PBMCs and murine peritoneal macrophages (PMs). Pre-incubation of PBMCs with WT14, a monoclonal antibody against CD14, abolished TNF-alpha and IL-1beta induction by E. coli LPS, while cytokine induction by meningococcal LPS was only partially inhibited. When LPS+- and LPS - -meningococci at higher concentrations were used as stimuli, anti-CD14 had a minimal effect. In C3H/HeJ murine PMs, devoid of a functional TLR4, minimal IL-1alpha, IL-6 and TNF-alpha production was seen after stimulation with 10 ng/mL E. coli or meningococcal LPS. However, at higher concentrations (1000 ng LPS/mL) the production of TNF-alpha, but not IL-1alpha or IL-6, occurred also independently of TLR4. The expression of a functional TLR4 in murine PMs had no effect on the cytokine induction by LPS+- or LPS - -meningococci. It is concluded that pro-inflammatory cytokine induction by N. meningitidis can occur independently of CD14 and TLR4.  相似文献   

10.
TNF-alpha has emerged as the major pro-inflammatory cytokine involved in the pathogenesis of rheumatoid arthritis (RA). LPS is a potent stimulator of TNF-alpha production by human monocytes. Ceramide, a structural homolog of LPS and a second messenger in the sphingomyelin signal transduction pathway has been shown to stimulate TNF-alpha production from murine macrophages. We have previously shown that GSTM, an anti-rheumatic drug inhibits LPS stimulated TNF-alpha production by normal PBMCs. We studied the ability of ceramide to stimulate TNF-alpha production by human PBMCs and the mechanism of action of GSTM on ceramide and LPS induced TNF-alpha production. LPS induced significant TNF-alpha production in PBMCs and THP-1. However, C(2) ceramide stimulated TNF-alpha production in 5 of 10 PBMCs (ceramide responder); it did not do so in the other 5 PBMCs (ceramide non-responder) or the THP-1 cell line. GSTM inhibited LPS stimulated TNF-alpha productions in PBMCs of all 5 ceramide responders both at protein and mRNA expression level. We also found that GSTM inhibited LPS induced NF-kappaB level only in ceramide responder. Thus, we for the first time report that GSTM inhibits LPS stimulated TNF-alpha production through ceramide pathway and anti-inflammatory activity of GSTM in treatment of RA may depend on its ability to inhibit NF-kappaB activation and TNF-alpha production.  相似文献   

11.
Protein-energy malnutrition (PEM) modifies resistance to infection, impairing a number of physiological processes, including hematopoiesis. In this study, we examined a few aspects of the inflammatory response to LPS in a model of PEM. We evaluated the cellularity of the blood, bone marrow and spleen, as well as phagocytic, fungicidal and spreading activity, the production in vivo and in vitro of TNF-alpha, IL-1alpha and IL-6, and the expression of CD14 and TLR-4/MD-2 receptors in macrophages. Two-month-old male Swiss mice were submitted to PEM with a low-protein diet containing 4% protein as compared to 20% protein in the control diet. When the experimental group had attained about 20% loss of their original body weight, they were used in the experiments. Malnourished animals presented anemia, leucopenia and severe reduction in bone marrow, spleen and peritoneal cavity cellularity. The production of TNF-alpha, IL-1alpha and IL-6 stimulated in vivo with LPS and the production of IL-6 in bone marrow cells cultured with LPS and the production of TNF-alpha in bone marrow, spleen and peritoneal cells cultured with LPS were significantly lower in malnourished animals. The expression of CD14 and TLR-4/MD-2 receptors was found to be significantly lower in macrophages of malnourished animals. These findings suggest that malnourished animals present a deficient response to LPS. The lower expression of the CD14 and TLR-4/MD-2 receptors may be partly responsible for the immunodeficiency observed in the malnourished mice. These data lead us to infer that the nutritional state interferes with the activation of macrophages and with the capacity to mount an immune response.  相似文献   

12.
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-alpha, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-kappaB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1beta, TNF-alpha, and receptor activator of NF-kappaB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.  相似文献   

13.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

14.
Influence of transglutaminase on the production of interleukin-1 (IL-1) and on the release of active oxygen from mouse peritoneal macrophages was examined using cystamine and methylamine, an enzyme inhibitor and a substrate inhibitor, respectively. Casein-elicited or lipopolysaccharide (LPS)-elicited macrophages have higher levels of transglutaminase activity in comparison with resident macrophages, and there exists a definite correlation between endocytosis of erythrocytes and transglutaminase activity in either group of macrophages. The release of IL-1 by resident macrophages stimulated with LPS in vitro was significantly inhibited by the treatment with both transglutaminase inhibitors. However, these inhibitors were not able to inhibit the release of IL-1 from casein-elicited macrophages stimulated with LPS in vitro. The production of active oxygen from LPS-elicited macrophages was inhibited in a dose-dependent manner by the treatment of macrophages with cystamine, but was not by the treatment with methylamine. However, the treatment of LPS-elicited macrophages with cystamine did not inhibit the uptake of glucose into macrophages. These results suggest that transglutaminase activity in mouse peritoneal macrophages is an important factor for macrophage functions.  相似文献   

15.
Upon LPS exposure, mononuclear phagocytes produce TNF-alpha and IL-10, two cytokines with pro- and anti-inflammatory activities, respectively. We previously described that murine resident alveolar macrophages, which play a central role in the immunosurveillance of the lung alveoli, do not synthesize IL-10 in vivo or in vitro when exposed to LPS. In the present report we demonstrate that during lung inflammation induced by the intranasal administration of LPS, bronchoalveolar cells collected between days 3 and 5 are able to synthesize IL-10 when exposed to LPS. We also show that depletion of resident alveolar macrophages by an intratracheal instillation of liposome-encapsulated clodronate is followed by subsequent replenishment of the airspaces by mononuclear phagocytes. This is accompanied by the transient competence of cells for IL-10 production. The cell capacity to produce IL-10 is evident up to 3 days and then decreases. This led us to hypothesize that the alveolar environment contains a down-regulator of LPS-induced IL-10 synthesis by recently emigrating mononuclear phagocytes. We show that the surfactant protein A, an airspace protein that has known immunomodulatory activities, dramatically inhibits LPS-induced IL-10 formation by bone marrow-derived macrophages. These data show a difference between resident and inflammatory macrophages with respect to IL-10 synthesis. Moreover, this study highlights for the first time the inhibitory role of surfactant protein A in the anti-inflammatory activity of macrophages through inhibition of IL-10 production.  相似文献   

16.
Alveolar macrophages express many proteins important in iron homeostasis, including the iron importer divalent metal transport 1 (DMT1) and the iron exporter ferroportin 1 (FPN1) that likely participate in lung defense. We found the iron regulatory hormone hepcidin (HAMP) is also produced by alveolar macrophages. In mouse alveolar macrophages, HAMP mRNA was detected at a low level when not stimulated but at a high level when exposed to lipopolysaccharide (LPS). LPS also affected the mRNA levels of the iron transporters, with DMT1 being upregulated and FPN1 downregulated. However, iron had no effect on HAMP expression but was able to upregulate both DMT1 and FPN1 in alveolar macrophages. IL-1 and IL-6, which are important in HAMP augmentation in hepatocytes, also did not affect HAMP expression in alveolar macrophages. In fact, the LPS-induced alterations in the expression of HAMP as well as DMT1 and FPN1 were preserved in the alveolar macrophages isolated from IL-1 receptor or IL-6-deficient mice. When alveolar macrophages were loaded with transferrin-bound (55)Fe, the subsequent release of (55)Fe was inhibited significantly by LPS. In addition, treatment of these cells with either LPS or HAMP caused the diminishment of the surface FPN1. These findings are consistent with the current model that HAMP production leads to a decreased iron efflux. Our studies suggest that iron mobilization by alveolar macrophages can be affected by iron and LPS via several pathways, including HAMP-mediated degradation of FPN1, and that these cells may use unique regulatory mechanisms to cope with iron imbalance in the lung.  相似文献   

17.
IL-1 and TNF-alpha are induced in macrophages by LPS; however, it is unclear whether similar mechanisms control the expression of both genes. Here, we report on the detection of differential regulation of LPS induced IL-1 and TNF-alpha mRNA expression and protein production in murine macrophages based on the use of inhibitors of second messenger pathways. Northern blot analysis was performed with total RNA obtained from murine (C57Bl/6) peritoneal macrophages stimulated in vitro with LPS with or without an inhibitor of protein kinase C (PKc)(1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride; H7) or an inhibitor of calmodulin (CaM)-dependent kinase (N-(6-amino-hexyl)-5-chloro-1-naphthalene-sulfonamide hydrochloride; W7). Northerns were analyzed with probes for IL-1 alpha and IL-1 beta and TNF-alpha. The expression of the three cytokine mRNA by LPS was inhibited in a dose response manner by H7. In contrast, the expression of IL-1 mRNA, but not TNF-alpha mRNA, was blocked by treatment with W7. Parallel studies monitoring biologic activities of these two cytokines confirm the mRNA data. PKc inhibitors, H7 and retinal, block both IL-1 and TNF-alpha protein production and inhibitors of CaM kinase, W7, N-(6-aminobutyl)-5-chloro-2-naphthalenesulfonamide, calmidazolum, and trifluoperazine dichloride inhibit only IL-1 production. These data suggest that both PKc and CaM kinase dependent pathways are involved in the induction of IL-1 mRNA by LPS. In contrast, TNF-alpha expression appears to be PKc dependent but not CaM kinase dependent.  相似文献   

18.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

19.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

20.
We examined modulatory effects of lipopolysaccharide (LPS) on IL-6 and IL-12 production by mouse Langerhans cells (LC), spleen-derived CD11c+ dendritic cells (DC), and macrophages (Mphi). Low dose LPS (1 ng/ml) increased IL-6 and IL-12 p40 production by Mphi. LPS slightly augmented IL-6 production but showed no effect on IL-12 p40 production by DC. In contrast, only high dose LPS (1 microg/ml) induced IL-6 but not IL-12 p40 production by LC. CD14 expression was the highest on Mphi and then on DC, but not on LC, which may explain the difference in responsiveness to LPS. We also found that TGF-beta inhibited IL-6 and IL-12 p40 production by LPS-stimulated Mphi. However, TGF-beta did not inhibit IL-6 production and even enhanced IL-12 p40 production by anti-CD40/IFN-gamma-stimulated Mphi. Concerning LC, TGF-beta enhanced IL-6 and IL-12 p40 production when stimulated with anti-CD40/IFN-gamma alone or with anti-CD40/IFN-gamma and LPS. Taken together, these findings indicate diverse effects of LPS and TGF-beta on these antigen presenting cells, which probably represents their differential roles in the innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号