首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Multimeric protein complexes are important for cell function and are being identified by proteomics approaches. Enrichment strategies, such as those employing affinity matrices, are required for the characterization of such complexes, for example, those containing growth factor receptors. The receptor for the macrophage lineage growth factor, macrophage-colony stimulating factor (M-CSF or CSF-1), is the tyrosine kinase, c-Fms. There is evidence that the CSF-1 receptor (CSF-1R) forms distinct multimeric complexes involving autophosphorylated tyrosines in its cytoplasmic region; however, these complexes are difficult to identify by immunoprecipitation, making enrichment necessary. We report here the use of a tyrosine-phosphorylated, GST-fusion construct of the entire CSF-1R cytoplasmic region to characterize proteins putatively associating with the activated CSF-1R. Besides signalling molecules known to associate with the receptor or be involved in CSF-1R-dependent signalling, mass spectrometry identified a number of other molecules binding to the construct. So far among these candidate proteins, dynein, claudin and silencer of death domains co-immunoprecipitated with the CSF-1R, suggesting association. This affinity matrix method, using an entire cytoplasmic region, may have relevance for other growth factor receptors.  相似文献   

2.
Colony-stimulating factor 1 (CSF-1) triggers the activation of intracellular proteins in macrophages through selective assembly of signalling complexes. The separation of multimeric complexes of the CSF-1 receptor (CSF-1R) by anion-exchange chromatography enabled the enrichment of low-stoichiometry complexes. A significant proportion of the receptor in CSF-1-stimulated cells that neither possessed detectable tyrosine kinase activity nor formed complexes was separated from the receptor pool displaying autokinase activity that formed chromatographically distinct multimeric complexes. A small pool of CSF-1R formed a multimeric complex with phosphatidylinositol-3 kinase (PI-3 kinase), SHP-1, Grb2, Shc, c-Src, Cbl, and a significant number of tyrosine-phosphorylated proteins in CSF-1-stimulated cells. The complex showed a considerable amount of CSF-1R complex-associated kinase activity. A detectable level of the complex was also present in untreated cells. PI-3 kinase in the multimeric complex displayed low lipid kinase activity despite the association with several proteins. The major pool of activated CSF-1R formed transient multimeric complexes with distinctly different tyrosine-phosphorylated proteins, which included STAT3 but also PI-3 kinase, Shc, SHP-1, and Grb2. A significant level of lipid kinase activity was detected in PI-3 kinase in the latter complexes. The different specific enzyme activities of PI-3 kinase in these complexes support the notion that the activity of PI-3 kinase is modulated by its association with CSF-1R and other associated cellular proteins. Specific structural proteins associated with the separate CSF-1R multimeric complexes upon CSF-1 stimulation and the presence of the distinct pools of the CSF-1R were dependent on the integrity of the microtubular network.  相似文献   

3.
Epidermal growth factor receptors (ErbB1-4) are oncogenic receptor tyrosine kinases (RTKs) that regulate diverse cellular processes. In this study, we combine measurement and mathematical modeling to quantify phospho-turnover at ErbB receptors in human cells and to determine the consequences for signaling and drug binding. We find that phosphotyrosine residues on ErbB1 have half-lives of a few seconds and therefore turn over 100-1000 times in the course of a typical immediate-early response to ligand. Rapid phospho-turnover is also observed for EGF-activated ErbB2 and ErbB3, unrelated RTKs, and multiple intracellular adaptor proteins and signaling kinases. Thus, the complexes formed on the cytoplasmic tail of active receptors and the downstream signaling kinases they control are highly dynamic and antagonized by potent phosphatases. We develop a kinetic scheme for binding of anti-ErbB1 drugs to receptors and show that rapid phospho-turnover significantly impacts their mechanisms of action.  相似文献   

4.
Addition of colony stimulating factor-1 (CSF-1) to macrophages stimulates the rapid, transient tyrosine phosphorylation, membrane association and multiubiquitination of Cbl (Wang et al. [1996] J. Biol. Chem. 271:17-20). Kinetic analysis reveals that the tyrosine phosphorylation of Cbl is coincident with its plasma membrane translocation and association with the activated tyrosine phosphorylated CSF-1 R, p85, Grb2, and tyrosine phosphorylated p58Shc and that these events precede the simultaneous multiubiquitination of Cbl and the CSF-1 R. Tyrosine phosphorylation and multiubiquitination of the cell surface CSF-1 R are stoichiometric and the multiubiquitinated CSF-1 R is degraded. Similarly, the membrane associated Cbl is almost stoichiometrically ubiquitinated, but the ubiquitinated Cbl is not degraded, being recovered, deubiquitinated, in the cytosol 3-10 min after stimulation at 37 degrees C. In the membrane fraction of cells stimulated at 4 degrees C, the association of p58Shc and Grb2 with Cbl is stable, whereas its association with Sos and p85 is transient and their dissociation occurs at the time CSF-1 R and Cbl multiubiquitination commence. The membrane translocation and the pattern of association of Sos with the CSF-1R, p85, Grb2, and p58Shc resemble those of Cbl but Sos is not tyrosine phosphorylated, nor multiubiquitinated and the coprecipitation of these proteins, other than Grb2, with Sos is much less. Complexes formed by Sos and Cbl are largely independent and membrane complexes of Cbl with other tyrosine phosphorylated proteins, p85 and Grb2 also contain CSF-1 R. These data raise the possibility that the predicted negative regulatory role of Cbl in macrophages is its enhancement of ligand-induced CSF-1 R internalization/degradation.  相似文献   

5.
Colony-stimulating factor-1 (CSF-1), also known as macrophage colony-stimulating factor, controls the survival, proliferation, and differentiation of mono-nuclear phagocytes and regulates cells of the female reproductive tract. It appears to play an autocrine and/or paracrine role in cancers of the ovary, endometrium, breast, and myeloid and lymphoid tissues. Through alternative mRNA splicing and differential post-translational proteolytic processing, CSF-1 can either be secreted into the circulation as a glycoprotein or chondroitin sulfate-containing proteoglycan or be expressed as a membrane-spanning glycoprotein on the surface of CSF-1-producing cells. Studies with the op/op mouse, which possesses an inactivating mutation in the CSF-1 gene, have established the central role of CSF-1 in directly regulating osteoclastogenesis and macrophage production. CSF-1 appears to preferentially regulate the development of macrophages found in tissues undergoing active morphogenesis and/or tissue remodeling. These CSF-1 dependent macrophages may, via putative trophic and/or scavenger functions, regulate characteristics such as dermal thickness, male fertility, and neural processing. Apart from its expression on mononuclear phagocytes and their precursors, CSF-1 receptor (CSF-1R) expression on certain nonmononuclear phagocytic cells in the female reproductive tract and studies in the op/op mouse indicate that CSF-1 plays important roles in female reproduction. Restoration of circulating CSF-1 to op/op mice has preliminarily defined target cell populations that are regulated either humorally or locally by the synthesis of cell-surface CSF-1 or by sequestration of the CSF-1 proteoglycan. The CSF-1R is a tyrosine kinase encoded by the c-fms proto-oncogene product. Studies by several groups have used cells expressing either the murine or human CSF-1R in fibroblasts to pinpoint the requirement of kinase activity and the importance of various receptor tyrosine phosphorylation sites for signaling pathways stimulated by CSF-1. To investigate post-CSF-1R signaling in the macrophage, proteins that are rapidly phosphorylated on tyrosine in response to CSF-1 have been identified, together with proteins associated with them. Studies on several of these proteins, including protein tyrosine phosphatase 1C, the c-cbl proto-oncogene product, and protein tyrosine phosphatase-phi are discussed. Mol Reprod Dev 46:4–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85–90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85–90 kDa protein is as yet unidentified. Since activated receptor tyrosine kinases may induce spreading in part by reducing phosphoinositol 4,5-bisphosphate (PIP2) binding to actin-associated proteins, a monoclonal antibody to PIP2 was used to assess the nature of PIP2 binding proteins in OCLs. Proteins of 85–90 kDa, 43 kDa, and 30 kDa were consistently demonstrated to bind PIP2. Further, the PIP2 content of the 85–90 kDa protein appeared to decrease with CSF-1 treatment. Whether this protein represents the phosphoprotein of the same M.W. is unclear. We also examined the effect of CSF-1 on the PIP2 content of α-actinin. Alpha -actinin showed low-level PIP2 binding, which was demonstrable only after immunoprecipitation and did not change with CSF-1 treatment. However, CSF-1 did cause a significant decline in the phosphotyrosine content of α-actinin. In contrast, in src OCLs, CSF-1 induced more prolonged phosphorylation of c-Fms, and the 85–90 kDa protein was markedly hypophosphorylated. Further, α-actinin did not dephosphorylate in src cells. We conclude that CSF-1-induced osteoclast spreading is accompanied by rapid reorganization of the actin cytoskeleton and phosphorylation of several cellular substrates, including c-Fms and c-Src. PIP2 binding to at least one protein appears to decrease with CSF-1 treatment, which may favor actin depolymerization. The reduced tyrosine phosphorylation of α-actinin could effect its ability to bind to actin. Thus c-Src may play an important role in these cellular events since in its absence, osteoclasts do not spread and signaling events downstream are altered. Whether these changes relate in part to the basal abnormalities in the cytoskeletal organization of src osteoclasts remains to be determined. Mol Reprod Dev 46:104–108, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   

8.
Metabolic labeling of simian virus 40-immortalized murine macrophages with 32Pi and immunoblotting with antibodies to phosphotyrosine demonstrated that the c-fms proto-oncogene product (colony-stimulating factor 1 [CSF-1] receptor) was phosphorylated on tyrosine in vivo and rapidly degraded in response to CSF-1. Stimulation of the CSF-1 receptor also induced immediate phosphorylation of several other cellular proteins on tyrosine. By contrast, the mature cell surface glycoprotein encoded by the v-fms oncogene was phosphorylated on tyrosine in the absence of CSF-1, suggesting that it functions as a ligand-independent kinase.  相似文献   

9.
W Li  E R Stanley 《The EMBO journal》1991,10(2):277-288
We have used kinetic and cross-linking approaches to study CSF-1-induced changes in the structure and function of the CSF-1R. Addition of CSF-1 to cells stimulates or stabilizes non-covalent CSF-1R dimerization resulting in activation of the CSF-1R kinase and the tyrosine phosphorylation of the receptor and certain cytoplasmic proteins. The non-covalent dimers become covalently linked via disulfide bonds and/or are subsequently further modified. These modified forms are selectively internalized. Pre-treatment of cells with the alkylating agent, iodoacetic acid (IAA), selectively inhibits covalent dimerization, modification and internalization but enhances protein tyrosine phosphorylation. It is proposed that ligand-induced non-covalent dimerization activates the CSF-1R kinase, whereas the covalent dimerization and subsequent modification lead to kinase inactivation, phosphotyrosine dephosphorylation and internalization of the receptor--ligand complex.  相似文献   

10.
Protein tyrosine phosphorylation was studied in macrophages and fibroblasts to identify putative components of post-receptor mitogenic pathways that might be functionally conserved in different cell types. Nondenaturing conditions were established for the approximately quantitative recovery of anti-phosphotyrosine antibody (alpha PY)-reactive proteins from cells. A common, 57-kDa alpha PY-reactive protein was identified by V8 protease peptide mapping in colony-stimulating factor-1 (CSF-1)- or granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated BAC1.2F5 macrophages, in platelet-derived growth factor-stimulated NIH-3T3 cells, and in CSF-1-stimulated NIH-3T3 cells expressing the c-fms/CSF-1 receptor. The 57-kDa protein was phosphorylated on serine and tyrosine and was the only alpha PY-reactive protein band whose phosphorylation was reproducibly increased in GM-CSF-stimulated cells. The effect of the growth factors on the tyrosine phosphorylation of the 57-kDa protein could be mimicked by treatment of the cells with orthovanadate, a phosphotyrosine protein phosphatase inhibitor. In the absence of growth factors, tyrosine phosphorylation of the 57-kDa protein was higher in v-fms or c-fms (F969, S301)-transformed NIH-3T3 cells than in untransformed NIH-3T3 (c-fms) and NIH-3T3 (c-fms, F969) cells. These data indicate that the 57-kDa protein is a common target for growth factor-stimulated tyrosine phosphorylation and potentially important for growth factor mitogenic signaling.  相似文献   

11.
12.
The protein tyrosine phosphatase SHP-1 is a critical regulator of macrophage biology, but its detailed mechanism of action remains largely undefined. SHP-1 associates with a 130-kDa tyrosyl-phosphorylated species (P130) in macrophages, suggesting that P130 might be an SHP-1 regulator and/or substrate. Here we show that P130 consists of two transmembrane glycoproteins, which we identify as PIR-B/p91A and the signal-regulatory protein (SIRP) family member BIT. These proteins also form separate complexes with SHP-2. BIT, but not PIR-B, is in a complex with the colony-stimulating factor 1 receptor (CSF-1R), suggesting that BIT may direct SHP-1 to the CSF-1R. BIT and PIR-B bind preferentially to substrate-trapping mutants of SHP-1 and are hyperphosphorylated in macrophages from motheaten viable mice, which express catalytically impaired forms of SHP-1, indicating that these proteins are SHP-1 substrates. However, BIT and PIR-B are hypophosphorylated in motheaten macrophages, which completely lack SHP-1 expression. These data suggest a model in which SHP-1 dephosphorylates specific sites on BIT and PIR-B while protecting other sites from dephosphorylation via its SH2 domains. Finally, BIT and PIR-B associate with two tyrosyl phosphoproteins and a tyrosine kinase activity. Tyrosyl phosphorylation of these proteins and the level of the associated kinase activity are increased in the absence of SHP-1. Our data suggest that BIT and PIR-B recruit multiple signaling molecules to receptor complexes, where they are regulated by SHP-1 and/or SHP-2.  相似文献   

13.
Mice null for the T-cell protein tyrosine phosphatase (Tcptp-/-) die shortly after birth due to complications arising from the development of a systemic inflammatory disease. It was originally reported that Tcptp-/- mice have increased numbers of macrophages in the spleen; however, the mechanism underlying the aberrant growth and differentiation of macrophages in Tcptp-/- mice is not known. We have identified Tcptp as an important regulator of colony-stimulating factor 1 (CSF-1) signaling and mononuclear phagocyte development. The number of CSF-1-dependent CFU is increased in Tcptp-/- bone marrow. Tcptp-/- mice also have increased numbers of granulocyte-macrophage precursors (GMP), and these Tcptp-/- GMP yield more macrophage colonies in response to CSF-1 relative to wild-type cells. Furthermore, we have identified the CSF-1 receptor (CSF-1R) as a physiological target of Tcptp through substrate-trapping experiments and its hyperphosphorylation in Tcptp-/- macrophages. Tcptp-/- macrophages also have increased tyrosine phosphorylation and recruitment of a Grb2/Gab2/Shp2 complex to the CSF-1R and enhanced activation of Erk after CSF-1 stimulation, which are important molecular events in CSF-1-induced differentiation. These data implicate Tcptp as a critical regulator of CSF-1 signaling and mononuclear phagocyte development in hematopoiesis.  相似文献   

14.
Macrophage colony stimulating factor (M-CSF or CSF-1) acts to regulate the development and function of cells of the macrophage lineage. Murine myeloid FDC-P1 cells transfected with the CSF-1 receptor (FD/WT) adopt a macrophage-like morphology when cultured in CSF-1. This process is abrogated in FDC-P1 cells transfected with the CSF-1 receptor with a tyrosine to phenyalanine substitution at position 807 (FD/807), suggesting that a molecular interaction critical to differentiation signaling is lost (Bourette, R. P., Myles, G. M., Carlberg, K., Chen, A. R., and Rohrschneider, L. R. (1995) Cell Growth Differ. 6, 631--645). A detailed examination of lysates of CSF-1-treated FD/807 cells by two-dimensional SDS-polyacrylamide gel electrophoresis (PAGE) revealed a number of proteins whose degree of tyrosine phosphorylation was modulated by the Y807F mutation. Included in this category were three phosphorylated proteins that co-migrated with p46/52(Shc). Immunoprecipitation, Western blotting, and in vitro binding studies suggest that they are indeed p46/52(Shc). A key regulator of differentiation in a number of cell systems, ERK was observed to exhibit an activity that correlated with the relative degree of differentiation induced by CSF-1 in the two cell types. Transfection of cells with a non-tyrosine-phosphorylatable form of p46/52(Shc) prevented the normally observed CSF-1-mediated macrophage differentiation as determined by adoption of macrophage-like morphology and expression of the monocyte/macrophage lineage cell surface marker, Mac-1. These results are the first to suggest that p46/52(Shc) may play a role in CSF-1-induced macrophage differentiation. Additionally, a number of proteins were identified by two-dimensional SDS-PAGE whose degree of tyrosine phosphorylation is also modulated by the Y807F substitution. This group of molecules may contain novel signaling molecules important in macrophage differentiation.  相似文献   

15.
In a screen for 3T3-F442A adipocyte proteins that bind SH2 domains, we isolated a cDNA encoding Fer, a nonreceptor protein-tyrosine kinase of the Fes/Fps family that contains a functional SH2 domain. A truncated splicing variant, iFer, was also cloned. iFer is devoid of both the tyrosine kinase domain and a functional SH2 domain but displays a unique 42-residue C terminus and retains the ability to form oligomers with Fer. Expression of both Fer and iFer proteins are strikingly increased upon differentiation of 3T3-L1 fibroblasts to adipocytes. Platelet-derived growth factor treatment of the cultured adipocytes caused rapid tyrosine phosphorylation of Fer and its recruitment to complexes containing platelet-derived growth factor receptor and the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase. Insulin treatment of 3T3-L1 adipocytes stimulated association of Fer with complexes containing tyrosine phosphorylated IRS-1 and PI 3-kinase but did not stimulate tyrosine phosphorylation of Fer. PI 3-kinase activity in anti-Fer immunoprecipitates was also acutely activated by insulin treatment of cultured adipocytes. These data demonstrate the presence of Fer tyrosine kinase in insulin signaling complexes, suggesting a role of Fer in insulin action.  相似文献   

16.
SHPTP1 (PTP1C, HCP, SHP) is an SH2 domain-containing tyrosine phosphatase expressed predominantly in hematopoietic cells. A frameshift mutation in the SHPTP1 gene causes the motheaten (me/me) mouse. These mice are essentially SHPTP1 null and display multiple hematopoietic abnormalities, most prominently hyperproliferation and inappropriate activation of granulocytes and macrophages. The me/me phenotype suggests that SHPTP1 negatively regulates macrophage proliferative pathways. Using primary bone marrow-derived macrophages from me/me mice and normal littermates, we examined the role of SHPTP1 in regulating signaling by the major macrophage mitogen colony-stimulating factor 1 (CSF-1) (also known as macrophage colony-stimulating factor). Macrophages from me/me mice hyperproliferate in response to CSF-1. In the absence of SHPTP1, the CSF-1 receptor (CSF-1R) is hyperphosphorylated upon CSF-1 stimulation, suggesting that SHPTP1 dephosphorylates the CSF-1R. At least some CSF-1R-associated proteins also are hyperactivated. SHPTP1 is associated constitutively, via its SH2 domains, with an unidentified 130-kDa phosphotyrosyl protein (P130). P130 and SHPTP1 are further tyrosyl phosphorylated upon CSF-1 stimulation. Tyrosyl-phosphorylated SHPTP1 binds to Grb2 via the Grb2 SH2 domain. Moreover, in me/me macrophages, Grb2 is associated, via its SH3 domains, with several tyrosyl phosphoproteins. These proteins are hyperphosphorylated on tyrosyl residues in me/me macrophages, suggesting that Grb2 may recruit substrates for SHPTP1. Our results indicate that SHPTP1 is a critical negative regulator of CSF-1 signaling in vivo and suggest a potential new function for Grb2.  相似文献   

17.
Using a combination of v-myc and v-ras oncogenes, we have established a growth factor-independent monocyte cell line from murine fetal liver (FL-ras/myc). Biologic and molecular characterization demonstrated that the gene for the macrophage growth factor CSF-1 and the c-fms proto-oncogene (CSF-1 receptor) are expressed in this cell line, thus suggesting autocrine regulation as a possible mechanism for the unregulated growth of these cells. To study this possibility, we used 1) mAb, to neutralize the CSF-1 protein produced by the cell line, and 2) antisense oligomers, to inhibit CSF-1 gene products by specific base-pairing of complementary nucleic acids. We report here that both approaches inhibited in vitro cell growth by 60 to 70%, whereas the combination of oligomer and mAb inhibited proliferation by 95%. However, control antisense oligomers (50% bp mismatch with CSF-1 mRNA) did not inhibit FL-ras/myc cell growth. Furthermore, the inhibitory effects of mAb and oligomers were reversible when they were removed from the media. Detection of cell-associated CSF-1 protein by immunofluorescence showed that cells treated with the antisense oligomer expressed significantly less CSF-1 protein. These results indicate that the FL-ras/myc cell line requires CSF-1 for autonomous growth and that oligomers can efficiently block production of autocrine growth factors.  相似文献   

18.
c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.  相似文献   

19.
Removal of colony-stimulating factor 1 (CSF-1) causes macrophages to round up and to increase their expression of protein tyrosine phosphatase phi (PTP phi). This is accompanied by the disruption of focal complexes and the formation of ruffles. Here we have overexpressed wild-type (WT) PTP phi and a phosphatase-inactive (C325S) mutant in a macrophage cell line in the presence and absence of CSF-1. In the presence of CSF-1, WT PTP phi induces cell rounding and ruffle formation, while C325S PTP phi has no effect. In contrast, in CSF-1-starved cells, C325S PTP phi behaves in a dominant negative fashion, preventing rounding and ruffling. Furthermore, C325S PTP phi increases adhesion in cycling cells, while WT PTP phi enhances motility. In WT PTP phi-overexpressing cells, the focal contact protein paxillin is selectively depleted from focal complexes and specifically dephosphorylated on tyrosine. In contrast, paxillin is hyperphosphorylated in C325S PTP phi-expressing cells. Moreover, a complex containing PTP phi, paxillin, and a paxillin-associated tyrosine kinase, Pyk2, can be immunoprecipitated from macrophage lysates, and the catalytic domain of PTP phi selectively binds paxillin and Pyk2 in vitro. Although PTP phi and Pyk2 do not colocalize with paxillin in focal complexes, all three proteins are colocalized in dorsal ruffles. The results suggest that paxillin is dephosphorylated by PTP phi in dorsal ruffles, using Pyk2 as a bridging molecule, resulting in a reduced pool of tyrosine-phosphorylated paxillin available for incorporation into focal complexes, thereby mediating CSF-1 regulation of macrophage morphology, adhesion, and motility.  相似文献   

20.
Macrophage colony stimulating factor (M-CSF) or CSF-1 controls the development of the macrophage lineage through its receptor tyrosine kinase, c-Fms. cAMP has been shown to influence proliferation and differentiation in many cell types, including macrophages. In addition, modulation of cellular ERK activity often occurs when cAMP levels are raised. We have shown previously that agents that increase cellular cAMP inhibited CSF-1-dependent proliferation in murine bone marrow-derived macrophages (BMM) which was associated with an enhanced extracellular signal-regulated kinase (ERK) activity. We report here that increasing cAMP levels, by addition of either 8-bromo cAMP (8BrcAMP) or prostaglandin E(1) (PGE1), can induce macrophage differentiation in M1 myeloid cells engineered to express the CSF-1 receptor (M1/WT cells) and can potentiate CSF-1-induced differentiation in the same cells. The enhanced CSF-1-dependent differentiation induced by raising cAMP levels correlated with enhanced ERK activity. Thus, elevated cAMP can promote either CSF-1-induced differentiation or inhibit CSF-1-induced proliferation depending on the cellular context. The mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK) inhibitor, PD98059, inhibited both the cAMP- and the CSF-1R-dependent macrophage differentiation of M1/WT cells suggesting that ERK activity might be important for differentiation in the M1/WT cells. Surprisingly, addition of 8BrcAMP or PGE1 to either CSF-1-treated M1/WT or BMM cells suppressed the CSF-1R-dependent tyrosine phosphorylation of cellular substrates, including that of the CSF-1R itself. It appears that there are at least two CSF-1-dependent pathway(s), one MEK/ERK dependent pathway and another controlling the bulk of the tyrosine phosphorylation, and that cAMP can modulate signalling through both of these pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号