首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

2.
C57BL/6 mice mount a cytotoxic T-lymphocyte (CTL) response against the Daniel's strain of Theiler's murine encephalomyelitis virus (TMEV) 7 days after infection and do not develop persistent infection or the demyelinating syndrome similar to multiple sclerosis seen in susceptible mice. The TMEV capsid peptide VP2121-130 sensitizes H-2Db+ target cells for killing by central-nervous-system-infiltrating lymphocytes (CNS-ILs) isolated from C57BL/6 mice infected intracranially. Db:VP2121-130 peptide tetramers were used to stain CD8(+) CNS-ILs, revealing that 50 to 63% of these cells bear receptors specific for VP2121-130 presented in the context of Db. No T cells bearing this specificity were found in the cervical lymph nodes or spleens of TMEV-infected mice. H-2(b) mice lacking CD4, class II, gamma interferon, or CD28 expression are susceptible to persistent virus infection but surprisingly still generate high frequencies of CD8(+), Db:VP2121-130-specific T cells. However, CD4-negative mice generate a lower frequency of Db:VP2121-130-specific T cells than do class II negative or normal H-2(b) animals. Resistant tumor necrosis factor alpha receptor I knockout mice also generate a high frequency of CD8(+) CNS-ILs specific for Db:VP2121-130. Furthermore, normally susceptible FVB mice that express a Db transgene generate Db:VP2121-130-specific CD8(+) CNS-ILs at a frequency similar to that of C57BL/6 mice. These results demonstrate that VP2121-130 presented in the context of Db is an immunodominant epitope in TMEV infection and that the frequency of the VP2121-130-specific CTLs appears to be independent of several key inflammatory mediators and genetic background but is regulated in part by the expression of CD4.  相似文献   

3.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

4.
R L Yauch  K Kerekes  K Saujani    B S Kim 《Journal of virology》1995,69(11):7315-7318
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in a chronic, immunologically mediated demyelinating disease that shares many features with human multiple sclerosis. CD4+ T lymphocytes play a critical role in the pathogenesis of virus-induced demyelinating disease. We have identified a region within amino acid residues 24 to 37 of the VP3 capsid protein of TMEV (VP3(24-37)) that is recognized by T lymphocytes from the demyelination-susceptible SJL/J strain of mice. The T-cell response to VP3(24-37) represents a predominant Th-cell response against the virus from either TMEV-immunized or TMEV-infected SJL/J mice, and viral epitopes VP1(233-250), VP2(74-86), and VP3(24-37) account for most of the Th-cell response to TMEV.  相似文献   

5.
M Kutubuddin  J Simons    M Chow 《Journal of virology》1992,66(5):3042-3047
Poliovirus-specific T lymphocytes were isolated from virus-immunized mice of different H-2 haplotypes. Immunological characterization of this population indicates that the effector population involved in the observed poliovirus-specific proliferative response was that of CD4-positive T-helper cells. Proliferative responses also were induced within these T-lymphocyte populations upon stimulation with either purified VP1 capsid protein or VP1 synthetic peptides. By using these synthetic peptides, several T-helper epitopes were identified. Generally, proliferative responses were observed in three regions of VP1. Two regions spanning VP1 residues 86 to 120 and 201 to 241 were recognized by T lymphocytes from BALB/c (H-2d), C57BL/6 (H-2b), and C3H/HeJ (H-2k) backgrounds. Analyses using synthetic peptides of nonoverlapping sequences indicated that the region spanning residues 201 to 241 may contain several T epitopes and may account for the strong proliferative response observed. In addition, for two of the three haplotypes examined, T epitopes were observed within residues 7 to 24 of VP1. Additional epitopes which appeared to be restricted to specific H-2 backgrounds were identified. T epitopes within VP1 that are common between different strains of mice appeared to lie within previously identified neutralizing antigenic sites in poliovirus.  相似文献   

6.
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.  相似文献   

7.
Cytotoxic T lymphocytes (CTLs) are critical for control of respiratory syncytial virus (RSV) infection in humans and mice. To investigate cellular immune responses to infection, it is important to identify major histocompatibility complex (MHC) class I-restricted CTL epitopes. In this study, we identified a new RSV-specific, H-2K(d)-restricted subdominant epitope in the M2 protein, M2(127-135) (amino acids 127 to 135). This finding allowed us to study the frequency of T lymphocytes responding to two H-2K(d)-presented epitopes in the same protein following RSV infection by enzyme-linked immunospot (ELISPOT) and intracellular cytokine assays for both lymphoid and nonlymphoid tissues. For the subdominant epitope, we identified an optimal nine-amino-acid peptide, VYNTVISYI, which contained an H-2K(d) consensus sequence with Y at position 2 and I at position 9. In addition, an MHC class I stabilization assay using TAP-2-deficient RMA-S cells transfected with K(d) or L(d) indicated that the epitope was presented by K(d). The ratios of T lymphocytes during the peak CTL response to RSV infection that were specific for M2(82-90) (dominant) to T lymphocytes specific for M2(127-135) (subdominant) were approximately 3:1 in the spleen and 10:1 in the lung. These ratios were observed consistently in primary or secondary infection by the ELISPOT assay and in secondary infection by MHC/peptide tetramer staining. The number of antigen-specific T lymphocytes dropped in the 6 weeks after infection; however, the proportions of T lymphocytes specific for the immunodominant and subdominant epitopes were maintained to a remarkable degree in a tissue-specific manner. These studies will facilitate investigation of the regulation of immunodominance of RSV-specific CTL epitopes.  相似文献   

8.
We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP) epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers). In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276–286) in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes.  相似文献   

9.
Cytotoxic T lymphocytes (CTL) recognize virus peptide fragments complexed with class I major histocompatibility complex (MHC) molecules on the surface of virus-infected cells. Recognition is mediated by a membrane-bound T-cell receptor (TCR) composed of alpha and beta chains. Studies of the CTL response to lymphocytic choriomeningitis virus (LCMV) in H-2b mice have revealed that three distinct viral epitopes are recognized by CTL of the H-2b haplotype and that all of the three epitopes are restricted by the Db MHC molecule. The immunodominant Db-restricted CTL epitope, located at LCMV glycoprotein amino acids 278 to 286, was earlier noted to be recognized by TCRs that consistently contained V alpha 4 segments but had heterogeneous V beta segments. Here we show that CTL clones recognizing the other two H-2Db-restricted epitopes, LCMV glycoprotein amino acids 34 to 40 and nucleoprotein amino acids 397 to 407 (defined in this study), utilize TCR alpha chains which do not belong to the V alpha 4 subfamily. Hence, usage of V alpha and V beta in the TCRs recognizing peptide fragments from one virus restricted by a single MHC molecule is not sufficiently homogeneous to allow manipulation of the anti-viral CTL response at the level of TCRs. The diversity of anti-viral CTL likely provides the host with a wider option for attacking virus-infected cells and prevents the emergence of virus escape mutants that might arise if TCRs specific for the virus were homogeneous.  相似文献   

10.
Cytotoxic T lymphocytes (CTLs) are important for the control of virus replication during respiratory infections. For human metapneumovirus (hMPV), an H-2(d)-restricted CTL epitope in the M2-2 protein has been described. In this study, we screened the hMPV F, G, N, M, M2-1, and M2-2 proteins using three independent algorithms to predict H-2(d) CTL epitopes in BALB/c mice. A dominant epitope (GYIDDNQSI) in positions 81 to 89 of the antitermination factor M2-1 and a subdominant epitope (SPKAGLLSL) in N(307-315) were detected during the anti-hMPV CTL response. Passive transfer of CD8(+) T-cell lines against M2-1(81-89) and N(307-315) protected Rag1(-/-) mice against hMPV challenge. Interestingly, diversification of CTL targets to include multiple epitopes was observed after repetitive infections. A subdominant response against the previously described M2-2 epitope was detected after the third infection. An understanding of the CTL response against hMPV is important for developing preventive and therapeutic strategies against the virus.  相似文献   

11.
Theiler''s virus-induced demyelinating disease has been extensively investigated as a model for persistent viral infection and multiple sclerosis (MS). However, the role of CD8+ T cells in the development of disease remains unclear. To assess the role of virus-specific CD8+ T cells in the pathogenesis of demyelinating disease, a single amino acid substitution was introduced into the predominant viral epitope (VP3 from residues 159 to 166 [VP3159-166]) and/or a subdominant viral epitope (VP3173-181) of susceptible SJL/J mice by site-directed mutagenesis. The resulting variant viruses (N160V, P179A, and N160V/P179A) failed to induce CD8+ T cell responses to the respective epitopes. Surprisingly, mice infected with N160V or N160V/P179A virus, which lacks CD8+ T cells against VP3159-166, did not develop demyelinating disease, in contrast to wild-type virus or P179A virus lacking VP3173-181-specific CD8+ T cells. Our findings clearly show that the presence of VP3159-166-specific CD8+ T cells, rather than viral persistence itself, is strongly correlated with disease development. VP3173-181-specific CD8+ T cells in the central nervous system (CNS) of these virus-infected mice expressed higher levels of transforming growth factor β, forkhead box P3, interleukin-22 (IL-22), and IL-17 mRNA but caused minimal cytotoxicity compared to that caused by VP3159-166-specific CD8+ T cells. VP3159-166-specific CD8+ T cells exhibited high functional avidity for gamma interferon production, whereas VP3173-181-specific CD8+ T cells showed low avidity. To our knowledge, this is the first report indicating that the induction of the IL-17-producing CD8+ T cell type is largely epitope specific and that this specificity apparently plays a differential role in the pathogenicity of virus-induced demyelinating disease. These results strongly advocate for the careful consideration of CD8+ T cell-mediated intervention of virus-induced inflammatory diseases.  相似文献   

12.
An intact T cell compartment and IFN-gamma signaling are required for protective immunity against Chlamydia. In the mouse model of Chlamydia pneumoniae (Cpn) infection, this immunity is critically dependent on CD8(+) T cells. Recently we reported that Cpn-infected mice generate an MHC class I-restricted CD8(+) Tc1 response against various Cpn Ags, and that CD8(+) CTL to multiple epitopes inhibit Cpn growth in vitro. Here, we engineered a DNA minigene encoding seven H-2(b)-restricted Cpn CTL epitopes, the universal pan-DR epitope Th epitope, and an endoplasmic reticulum-translocating signal sequence. Immunization of C57BL/6 mice with this construct primed IFN-gamma-producing CD8(+) CTL against all seven CTL epitopes. CD8(+) T cell lines generated to minigene-encoded CTL epitopes secreted IFN-gamma and TNF-alpha and exhibited CTL activity upon recognition of Cpn-infected macrophages. Following intranasal challenge with Cpn, a 3.6 log reduction in mean lung bacterial numbers compared with control animals was obtained. Using a 20-fold increase in the Cpn challenging dose, minigene-vaccinated mice had a 60-fold reduction in lung bacterial loads, compared with controls. Immunization and challenge studies with beta(2)-microglobulin(-/-) mice indicated that the reduction of lung Cpn burdens was mediated by the MHC class I-dependent CD8(+) T cells to minigene-included Cpn CTL epitopes, rather than by pan-DR epitope-specific CD4(+) T cells. This constitutes the first demonstration of significant protection achieved by immunization with a CD8(+) T cell epitope-based DNA construct in a bacterial system and provides the basis for the optimal design of multicomponent anti-Cpn vaccines for humans.  相似文献   

13.
Simian virus 40 large tumor (T) antigen contains three H-2Db-restricted (I, II/III, and V) and one H-2Kb-restricted (IV) cytotoxic T lymphocyte (CTL) epitopes. We demonstrate that a hierarchy exists among these CTL epitopes, since vigorous CTL responses against epitopes I, II/III, and IV are detected following immunization of H-2b mice with syngeneic, T-antigen-expressing cells. By contrast, a weak CTL response against the H-2Db-restricted epitope V was detected only following immunization of H-2b mice with epitope loss variant B6/K-3,1,4 cells, which have lost expression of CTL epitopes I, II/III, and IV. Limiting-dilution analysis confirmed that the lack of epitope V-specific CTL activity in bulk culture splenocytes correlated with inefficient expansion and priming of epitope V-specific CTL precursors in vivo. We examined whether defined genetic alterations of T antigen might improve processing and presentation of epitope V to the epitope V-specific CTL clone Y-5 in vitro and/or overcome the recessive nature of epitope V in vivo. Deletion of the H-2Db-restricted epitopes I and II/III from T antigen did not increase target cell lysis by epitope V-specific CTL clones in vitro. The amino acid sequence SMIKNLEYM, which species an optimized H-2Db binding motif and was found to induce CTL in H-2b mice, did not further reduce epitope V presentation in vitro when inserted within T antigen. Epitope V-containing T-antigen derivatives which retained epitopes I and II/III or epitope IV did not induce epitope V-specific CTL in vivo: T-antigen derivatives in which epitope V replaced epitope I failed to induce epitope V-specific CTL. Recognition of epitope V-H-2Db complexes by multiple independently derived epitope V-specific CTL clones was rapidly and dramatically reduced by incubation of target cells in the presence of brefeldin A compared with the recognition of the other T-antigen CTL epitopes by epitope specific CTL, suggesting that the epitope V-H-2Db complexes either are labile or are present at the cell surface at reduced levels. Our results suggest that processing and presentation of epitope V is not dramatically altered (reduced) by the presence of immunodominant CTL epitopes in T antigen and that the immunorecessive nature of epitope V is not determined by amino acids which flank its native location within simian virus 40 T antigen.  相似文献   

14.
Many specific antiviral and antitumour immune responses have been attributed to the protective effects of antigen-specific CD8+ cytotoxic T lymphocytes (CTL). Recognition of virus infected or tumour cells by CTL requires presentation of at least one peptide epitope from a virus or tumour-specific antigen by the relevant MHC Class I molecule. Viral genes with mutations which remove CTL epitopes may thus be favoured for survival. Human cervical cancers are caused by papillomavirus infection, and these cancers consistently express the E7 protein of the oncogenic papillomavirus. We therefore investigated the MHC Class I restricted T cell epitopes of the human papillomavirus type 16 E7 oncoprotein using mice of five different genetic backgrounds, and an IFN-gamma ELISPOT assay, to determine the frequency with which MHC Class I epitopes might be expected in this small oncoprotein (98 amino acids). No MHC Class I restricted responses were detected in E7 immunized BALB/c (H-2d), CBA/CaH (H-2 k), FVB/N (H-2q) or A2KbH2b human HLA2.1 transgenic mice. In C57BL/6 J (H-2b) mice, a previously identified single antigenic epitope was detected. Therefore, we conclude that there is a paucity of MHC Class I restricted T cell epitopes in HPV16 E7 protein because of its small size. This might be advantageous to the virus. Furthermore here we present a quick and easy method to exhaustively determine CD8 T cell epitopes in proteins using a unique set of overlapping 8, 9 and 10 mer synthetic peptides.  相似文献   

15.
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.  相似文献   

16.
C57BL/6 (B6; H-2(b)) mice mount strong AKR/Gross murine leukemia virus (MuLV)-specific CD8(+) CTL responses to the immunodominant K(b)-restricted epitope, KSPWFTTL, of endogenous AKR/Gross MuLV. In sharp contrast, spontaneous virus-expressing AKR.H-2(b) congenic mice are low/nonresponders for the generation of AKR/Gross MuLV-specific CTL. Furthermore, when viable AKR.H-2(b) spleen cells are cocultured with primed responder B6 antiviral precursor CTL, the AKR.H-2(b) cells function as "veto" cells that actively mediate the inhibition of antiviral CTL generation. AKR.H-2(b) veto cell inhibition is virus specific, MHC restricted, contact dependent, and mediated through veto cell Fas ligand/responder T cell Fas interactions. In this study, following specific priming and secondary in vitro restimulation, antiretroviral CD8(+) CTL were identified by a labeled K(b)/KSPWFTTL tetramer and flow cytometry, enabling direct visualization of AKR.H-2(b) veto cell-mediated depletion of these CTL. A 65-93% reduction in the number of B6 K(b)/KSPWFTTL tetramer(+) CTL correlated with a similar reduction in antiviral CTL cytotoxicity. Addition on sequential days to the antiviral CTL restimulation cultures of either 1) AKR.H-2(b) veto cells or 2) a blocking Fas-Ig fusion protein (to cultures also containing AKR.H-2(b) veto cells) to block inhibition demonstrated that AKR.H-2(b) veto cells begin to inhibit B6 precursor CTL/CTL expansion during days 2 and 3 of the 6-day culture. Shortly thereafter, a high percentage of B6 tetramer(+) CTL cocultured with AKR.H-2(b) veto cells was annexin V positive and Fas(high), indicating apoptosis as the mechanism of veto cell inhibition. Experiments using the irreversible inhibitor emetine demonstrated that AKR.H-2(b) cells had to be metabolically active and capable of protein synthesis to function as veto cells. Of the tetramer-positive CTL that survived veto cell-mediated apoptosis, there was no marked skewing from the preferential usage of Vbeta4, 8.1/8.2, and 11 TCR normally observed. These findings provide further insight into the complexity of host/virus interactions and suggest a fail-safe escape mechanism by virus-infected cells for epitopes residing in critical areas of viral proteins that cannot accommodate variations of amino acid sequence.  相似文献   

17.
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.  相似文献   

18.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease serves as a relevant animal model of human multiple sclerosis. Myelin damage induced by TMEV infection appears to be immune mediated. Disease susceptibility correlates best with the temporal development of chronic, high levels of TMEV-specific, MHC class II-restricted delayed-type hypersensitivity (DTH) responses. We have proposed a model wherein these responses result in CNS demyelination via a macrophage-mediated terminal nonspecific bystander response. As virus-specific DTH responses appear to be intimately involved in the pathogenicity of CNS demyelination, it is critical to determine the specificity of these responses so that effector T cells specific for potential pathogenic epitopes can be targeted to serve as the focus of specific immunoregulatory processes. In the current study, the capsid protein specificity of the TMEV-susceptible SJL/J and TMEV-resistant C57BL/6 mouse strains was examined. DTH and Tprlf responses in both infected and immunized SJL/J mice were found to be predominantly directed toward the VP2 capsid protein, specifically to an epitope(s) contained within the N-terminal 150 amino acids of VP2. This same epitope was also found to be dominant in priming SJL/J mice for responses to challenge with intact virions. In contrast, the T cell-mediated responses of TMEV-resistant C57BL/6 mice did not show preferential reactivity towards VP2, because all three major capsid proteins (VP1, VP2, and VP3) elicited responses with essentially equal potency. The relationship of the restricted VP2 T cell epitope to predicted neutralizing antibody sites on the VP2 protein is discussed as is the potential use of this epitope for prevention and/or treatment of TMEV-induced demyelinating disease via the induction of epitope-specific tolerance.  相似文献   

19.
H-2b class I-restricted, TNP-specific CTL clones were obtained by limiting dilution cloning of either short term polyclonal CTL lines or spleen cells of TNP-immunized mice directly ex vivo. Sequence analyses of mRNA coding for TCR alpha- and beta-chains of 11 clones derived from CTL lines from individual C57BL/6 mice revealed that all of them expressed unique but clearly nonrandom receptor structures. Five alpha-chains (45%) employed V alpha 10 gene elements, and four of those (36%) were associated with J beta 2.6-expressing beta-chains. The alpha-chains from these four TCR, moreover, contained an acidic amino acid in position 93 of their N or J region-determined sequences. Clones isolated directly from spleen cells carried these types of receptors at lower frequency, 27% V alpha 10 and 19% J beta 2.6, indicating that bulk in vitro cultivation on Ag leads to selection for these particular receptors. However, even in TNP-specific CTL cloned directly ex vivo, V alpha 10 usage was increased about fivefold over that in Ag-independently activated T cells in H-2b mice (4 to 5%). The selection for V alpha 10/J beta 2.6-expressing cells was obtained repeatedly in other TNP-specific CTL lines from C57BL/6 mice but not in FITC-specific CTL from the same strain or in TNP-specific CTL lines from B10.BR (H-2k) or B10.D2 (H-2d) mice. We conclude from this (a) that the selection for V alpha 10/J beta 2.6+ T cells is driven by the complementarity of these receptors to a combination of TNP and MHC epitopes and (b) that predominant receptor structures reflect the existence of a surprisingly limited number of "T cell-relevant" hapten determinants on the surface of covalently TNP-modified cells.  相似文献   

20.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号