首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and energetics of protein-folding intermediates are poorly understood. We have identified, in the thermal unfolding of the apoflavodoxin from Anabaena PCC 7119, an equilibrium intermediate with spectroscopic properties of a molten globule and substantial enthalpy and heat capacity of unfolding. The structure of the intermediate is probed by mutagenesis (and phi analysis) of polar residues involved in surface-exposed hydrogen bonds connecting secondary-structure elements in the native protein. All hydrogen bonds analysed are formed in the molten globule intermediate, either with native strength or debilitated. This suggests the overall intermediate's topology and surface tertiary interactions are close to native, and indicates that hydrogen bonding may contribute significantly to shape the conformation and energetics of folding intermediates.  相似文献   

2.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

3.
The amino-terminal domain of apolipoprotein (apo) E4 is less susceptible to chemical and thermal denaturation than the apoE3 and apoE2 domains. We compared the urea denaturation curves of the 22-kDa amino-terminal domains of the apoE isoforms at pH 7.4 and 4.0. At pH 7.4, apoE3 and apoE4 reflected an apparent two-state denaturation. The midpoints of denaturation were 5.2 and 4.3 m urea, respectively. At pH 4.0, a pH value known to stabilize folding intermediates, apoE4 and apoE3 displayed the same order of denaturation but with distinct plateaus, suggesting the presence of a stable folding intermediate. In contrast, apoE2 proved the most stable and lacked the distinct plateau observed with the other two isoforms and could be fitted to a two-state unfolding model. Analysis of the curves with a three-state unfolding model (native, intermediate, and unfolded) showed that the apoE4 folding intermediate reached its maximal concentration ( approximately 90% of the mixture) at 3.75 m, whereas the apoE3 intermediate was maximal at 4.75 m ( approximately 80%). These results are consistent with apoE4 being more susceptible to unfolding than apoE3 and apoE2 and more prone to form a stable folding intermediate. The structure of the apoE4 folding intermediate at pH 4.0 in 3.75 m urea was characterized using pepsin proteolysis, Fourier transform infrared spectroscopy, and dynamic light scattering. From these studies, we conclude that the apoE4 folding intermediate is a single molecule with the characteristics of a molten globule. We propose a model of the apoE4 molten globule in which the four-helix bundle of the amino-terminal domain is partially opened, generating a slightly elongated structure and exposing the hydrophobic core. Since molten globules have been implicated in both normal and abnormal physiological function, the differential abilities of the apoE isoforms to form a molten globule may contribute to the isoform-specific effects of apoE in disease.  相似文献   

4.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

5.
The equilibrium and kinetics of canine milk lysozyme folding/unfolding were studied by peptide and aromatic circular dichroism and tryptophan fluorescence spectroscopy. The Ca2+-free apo form of the protein exhibited a three-state equilibrium unfolding, in which the molten globule state is well populated as an unfolding intermediate. A rigorous analysis of holo protein unfolding, including the data from the kinetic refolding experiments, revealed that the holo protein also underwent three-state unfolding with the same molten globule intermediate. Although the observed kinetic refolding curves of both forms were single-exponential, a burst-phase change in the peptide ellipticity was observed in both forms, and the burst-phase intermediates of both forms were identical to each other with respect to their stability, indicating that the intermediate does not bind Ca2+. This intermediate was also shown to be identical to the molten globule state observed at equilibrium. The phi-value analysis, based on the effect of Ca2+ on the folding and unfolding rate constants, showed that the Ca2+-binding site was not yet organized in the transition state of folding. A comparison of the result with that previously reported for alpha-lactalbumin indicated that the folding initiation site is different between canine milk lysozyme and alpha-lactalbumin, and hence, the folding pathways must be different between the two proteins. These results thus provide an example of the phenomenon wherein proteins that are very homologous to each other take different folding pathways. It is also shown that the native state of the apo form is composed of at least two species that interconvert.  相似文献   

6.
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The aspartic acid (Asp)-induced unfolding and the salt-induced folding of arginine kinase (AK) were studied in terms of enzyme activity, intrinsic fluorescence emission spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra and far-UV circular dichroism (CD) spectra. The results showed that Asp caused inactivation and unfolding of AK with no aggregation during AK denaturation. The unfolding of the whole molecule and the inactivation of AK in different Asp concentrations were compared. Much lower Asp concentration was required to induce inactivation than to produce significant conformational changes of the enzyme molecule. However, with further addition of Asp, the molar ellipticity at 222 and 208 nm, the wavelength shift and the emission intensity of ANS hardly changed. Asp denatured AK was reactivated by dilution. In addition, potassium chloride (KCl) induced the molten globule state with a compact structure after AK was denatured with 7.5 mM Asp. These results collectively elucidate the osmotic effect of Asp anions for the molten globule formed during unfolding process. They also suggest that the effect of Asp differed from that of other denaturants such as guanidine hydrochloride or urea during AK folding. The molten globule state indicates that intermediates exist during AK folding.  相似文献   

8.
The denaturant-induced equilibrium unfolding transition of equine beta-lactoglobulin was investigated by ultraviolet absorption, fluorescence, and circular dichroism (CD) spectra. An equilibrium intermediate populates at moderate denaturant concentrations, and its CD spectrum is similar to that of the molten globule state previously observed for this protein at acid pH [Ikeguchi, M., Kato, S., Shimizu, A., and Sugai, S. (1997) Proteins: Struct., Funct., Genet. 27, 567-575]. The unfolding and refolding kinetics were also investigated by the stopped-flow CD and fluorescence. A significant change in the CD intensity was observed within the dead time of measurements (25 ms) when the refolding reaction was initiated by diluting the urea-unfolded protein solution, indicating the transient accumulation of the folding intermediate. The CD spectrum of this burst-phase intermediate agrees well with that of the molten globule state at acid pH. The stability of the burst-phase intermediate was also estimated from the urea-concentration dependence of the burst-phase amplitude, and it shows a fair agreement with that of the equilibrium intermediate. These results indicate that the molten globule state of equine beta-lactoglobulin populates at moderate urea concentration as well as at acid pH and it is equivalent with the kinetic folding intermediate.  相似文献   

9.
The study of protein folding and unfolding pathways lends a fascinating dimension to protein biochemistry. Several models for protein folding have been postulated. Two powerful probes used in protein folding study are far UV-CD monitored stopped flow kinetics and pulse hydrogen exchange in conjunction with NMR. The formation of molten globule, which is an intermediate possessing secondary structure but not a well packed tertiary structure, is now emerging as a common feature on the folding pathway of many proteins. The molten globule is recognized by a class of molecules called chaperones which act as accelerators of protein folding. This article ends by elucidating why proteins are Nature's choice as catalysts.  相似文献   

10.
Fluorescence resonance energy transfer (FRET) is one of the few methods available to measure the rate at which a folding protein collapses. Using staphylococcal nuclease in which a cysteine residue was engineered in place of Lys64, permitted FRET measurements of the distance between the donor tryptophan 140 and 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid-labeled Cys64. These measurements were undertaken on both equilibrium partially folded intermediates at low pH (A states), as well as transient intermediates during stopped-flow refolding. The results indicate that there is an initial collapse of the protein in the deadtime of the stopped-flow instrument, corresponding to a regain of approximately 60% of the native signal, followed by three slower transients. This is in contrast to circular dichroism measurements which show only 20-25% regain of the native secondary structure in the burst phase. Thus hydrophobic collapse precedes the formation of substantial secondary structure. The first two detected transient intermediate species have FRET properties essentially identical with those of the previously characterized equilibrium A state intermediates, suggesting similar structures between the equilibrium and transient intermediates.The effects of anions on the folding of acid-unfolded staphylococcal nuclease, and urea on the unfolding of the resulting A states, indicates that in folding the protein becomes compact prior to formation of major secondary structure, whereas in unfolding the protein expands prior to major loss of secondary structure. Comparison of the kinetics of refolding of staphylococcal nuclease, monitored by FRET, and for a proline-free variant, indicate that folding occurs via two partially folded intermediates leading to a native-like species with one (or more) proline residues in a non-native conformation. For the A states an excellent correlation between compactness measured by FRET, and compactness determined from small-angle X-ray scattering, was observed. Further, a linear relationship between compactness and free energy of unfolding was noted. Formation of soluble aggregates of the A states led to dramatic enhancement of the FRET, consistent with intermolecular fluorescence energy transfer.  相似文献   

11.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

12.
The lactic acid induced unfolding and the salt-induced folding of creatine kinase (CK) were studied by enzyme activity, fluorescence emission spectra, circular dichroism spectra, and native polyacrylamide gel electrophoresis. The results showed that the kinetics of CK inactivation was a monophase process. Lactic acid caused inactivation and unfolding of CK with no aggregation during CK denaturation. The unfolding of the whole molecule and the inactivation of CK in solutions of different concentration of lactic acid were compared. Much lower lactic acid concentration values were required to bring about inactivation than were required to produce significant conformational changes of the enzyme molecule. At higher concentrations of lactic acid (more than 0.2 mM) the CK dimers were partially dissociated, as proved by native polyacrylamide gel electrophoresis. NaCl induced the molten globule state with a compact structure after CK was denatured with 0.8 mM lactic acid, and the increasing of anions led to a tight side-chain. The above results suggest that the effect of lactic acid differed from that of other denaturants such as guanidine hydrochloride, HCI, or urea during CK folding, and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

13.
Interaction of non-electrolytes such as urea with proteins especially at lower concentrations is opening-up newer concepts in the understanding of protein stability and folding in proteomics. In this study, the secondary and tertiary structural characteristics and thermal stability of human serum albumin at lower concentrations of urea have been monitored. The protein attains a molten globule like structure at concentration urea below 2 M. This structural state also shows an increase in the alpha-helical content as compared to the native state. At concentrations of urea above 2 M, human serum albumin starts unfolding, resulting in a three-state transition with two mid points of transitions at around 4 M and 7 M urea concentrations. The characteristics of the partially folded intermediates are discussed with respect to the three component system analyses. Preferential hydration dominates over preferential interaction at lower concentration of urea (up to 2.5 M) and at higher concentration, the preferential interaction overtakes preferential hydration in a competitive manner. Formation of structural intermediates at lower concentration of urea is hypothesized as a general phenomenon in proteins and fits in with the observation with preferential interaction parameters by Timasheff and co-workers in the case of lysozyme and ribonuclease at different pH values.  相似文献   

14.
Chattopadhyay K  Mazumdar S 《Biochemistry》2003,42(49):14606-14613
The interaction of submicellar concentrations of sodium dodecyl sulfate (SDS) with horse heart cytochrome c has been found to stabilize two spectroscopically distinct partially folded intermediates at pH 7. The first intermediate is formed by the interaction of SDS with native cytochrome c, and this intermediate retains the majority of the secondary structure while the tertiary structure of the protein is lost. The unfolding of this intermediate with urea leads to the formation of a second intermediate, which is also formed on refolding of the unfolded protein (unfolded by urea) by SDS. The second intermediate retains about 50% of the native secondary structure with no tertiary structure of the protein. The second intermediate was found to be absent at low pH. While induction of helical structure of a protein by SDS in the native condition has been reported earlier, this is possibly the first report of the refolding of a protein in a strongly denaturing condition (in the presence of 10 M urea). The relative contributions of the hydrophobic and the electrostatic interactions of the surfactants with cytochrome c have been determined from the formation of the molten globule species from the acid-induced unfolded protein in the presence of SDS or lauryl maltoside.  相似文献   

15.
In recent years great interest has been generated in the process of protein folding, and the formation of intermediates during the folding process has been proven with new experimental strategies. In the present work, we have examined the molten globule state of Bacillus licheniformis alpha-amylase (BLA) by intrinsic fluorescence and circular dichroism spectra, 1-anilino naphthalene-8-sulfonate (ANS) binding and proteolytic digestion by pepsin, for comparison to its mesophilic counterpart, Bacillus amyloliquefaciens alpha-amylase (BAA). At pH 4.0, both enzymes acquire partially folded state which show characteristics of molten globule state. They unfold in such a way that their hydrophobic surfaces are exposed to a greater extent compared to the native forms. Chemical denaturation studies by guanidine hydrochloride and proteolytic digestion with pepsin show that molten globule state of BLA is more stable than from BAA. Results from gel filtration indicate that BAA has the same compactness at pH 4.0 and 7.5. However, molten globule state of BLA is less compact than its native state. The effects of polyols such as trehalose, sorbitol and glycerol on refolding of enzymes from molten globule to native state were also studied. These polyols are effective on refolding of mesophilic alpha-amylase but only slightly effect on BLA refolding. In addition, the folding pathway and stability of intermediate state of the thermophilic and the mesophilic alpha-amylases are discussed.  相似文献   

16.
Folding mechanisms of a variant of green fluorescent protein (F99S/M153T/V163A) were investigated by a wide variety of spectroscopic techniques. Equilibrium measurements on acid-induced denaturation of the protein monitored by chromophore and tryptophan fluorescence and small-angle X-ray scattering revealed that this protein accumulates at least two equilibrium intermediates, a native-like intermediate and an unfolding intermediate, the latter of which exhibits the characteristics of the molten globule state under moderately denaturing conditions at pH 4. To elucidate the role of the equilibrium unfolding intermediate in folding, a series of kinetic refolding experiments with various combinations of initial and final pH values, including pH 7.5 (the native condition), pH 4.0 (the moderately denaturing condition where the unfolding intermediate is accumulated), and pH 2.0 (the acid-denaturing condition) were carried out by monitoring chromophore and tryptophan fluorescence. Kinetic on-pathway intermediates were accumulated during the folding on the refolding reaction from pH 2.0 to 7.5. However, the signal change corresponding to the conversion from the acid-denatured to the kinetic intermediate states was significantly reduced on the refolding reaction from pH 4.0 to pH 7.5, whereas only the signal change corresponding to the above conversion was observed on the refolding reaction from pH 2.0 to pH 4.0. These results indicate that the equilibrium unfolding intermediate is composed of an ensemble of the folding intermediate species accumulated during the folding reaction, and thus support a hierarchical model of protein folding.  相似文献   

17.
The molten globule has been assumed to be a major intermediate state of protein folding. To extend our understanding of protein folding it is important to elucidate the thermodynamic mechanism of conformational stability of the molten globule. To clarify the role of electrostatic charge repulsion in the stability of the acidic molten globule state, we prepared a series of acetylated horse ferricytochrome c species with various degrees of charge repulsion. On the basis of circular dichroism measurement, we show that the stability of the acidic molten globule is determined by a balance of electrostatic repulsions between positive residues, which favor the extended conformation, and the opposing forces, which stabilize the molten globule. These results provide a clear example of charge repulsions producing unfolding of the compact protein structure, and suggest that the reversibly denatured conformation of ferricytochrome c under physiological conditions (i.e. neutral pH, ambient temperature and no denaturant) is the molten globule.  相似文献   

18.
Alternatively folded states of an immunoglobulin   总被引:1,自引:0,他引:1  
Well-defined, non-native protein structures of low stability have been increasingly observed as intermediates in protein folding or as equilibrium structures populated under specific solvent conditions. These intermediate structures, frequently referred to as molten globule states, are characterized by the presence of secondary structure, a lack of significant tertiary contacts, increased hydrophobicity and partial specific volume as compared to native structures, and low cooperativity in thermal unfolding. The present study demonstrates that under acidic conditions (pH less than 3) the antibody MAK33 can assume a folded stable conformation. This A-state is characterized by a high degree of secondary structure, increased hydrophobicity, a native-like maximum wavelength of fluorescence emission, and a tendency toward slow aggregation. A prominent feature of this low-pH conformation is the stability against denaturant and thermal unfolding that is manifested in highly cooperative reversible phase transitions indicative of the existence of well-defined tertiary contacts. These thermodynamic results are corroborated by the kinetics of folding from the completely unfolded chain to the alternatively folded state at pH 2. The given data suggest that MAK33 at pH 2 adopts a cooperative structure that differs from the native immunoglobulin fold at pH 7. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its extraordinary structural stability that is characteristic for native protein structures.  相似文献   

19.
Insertion of some protein toxins into membranes proceeds through an unfolding step. The unfolding trigger can be the low pH in endosomes, exposure to body temperature, reduction of disulphide bonds or proteolytic cleavage occurring at the membrane surface. The insertion intermediates are not fully unfolded but have the features of a 'molten globule state' that is also observed at early stages of polypeptide folding. In this article, we review the evidence supporting these ideas and speculate about the implications of the molten globule intermediate for understanding the general mechanisms of protein insertion and translocation across membranes.  相似文献   

20.
Acid-induced unfolding of the tetrameric glucose/xylose isomerase (GXI) from Streptomyces sp. NCIM 2730 has been investigated using intrinsic fluorescence, fluorescence quenching, second derivative spectroscopy, hydrophobic dye (1-anilino-8-naphthalene-sulfonate) binding and CD techniques. The pH dependence of tryptophanyl fluorescence of GXI at different temperatures indicated the presence of two stable intermediates at pH 5.0 and pH 3.0. The pH 3.2 intermediate was a dimer and exhibited molten globule-like characteristics, such as the presence of native-like secondary structure, loss of tertiary structure, increased exposure of hydrophobic pockets, altered microenvironment of tyrosine residues and increased accessibility to quenching by acrylamide. Fluorescence and CD studies on GXI at pH 5.0 suggested the involvement of a partially folded intermediate state in the native to molten globule state transition. The partially folded intermediate state retained considerable secondary and tertiary structure compared to the molten globule state. This state was characterized by its hydrophobic dye binding capacity, which is smaller than the molten globule state, but was greater than that of the native state. This state shared the dimeric status of the molten globule state but was prone to aggregate formation as evident by the Rayleigh light scattering studies. Based on these results, the unfolding pathway of GXI can be illustrated as: N-->PFI-->MG-->U; where N is the native state at pH 7.5; PFI is the partially folded intermediate state at pH 5.0; MG is the molten globule state at pH 3.2 and U is the monomeric unfolded state of GXI obtained in the presence of 6 M GdnHCl. Our results demonstrate the existence of a partially folded state and molten globule state on the unfolding pathway of a multimeric alpha/beta barrel protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号