首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anionic H2TPPS porphyrin and its copper derivative, CuTPPS, form in aqueous solution hetero-aggregates with the cationic H2T4 porphyrin and its copper derivative, CuT4. In the presence of poly-L-glutamate, at pH 4.0, a CD signal appears in the Soret region of the spectrum, indicating that the polypeptide has induced chirality into the structure of the aggregates. These species exhibit remarkable inertness due to the strength and number of the coulombic interactions between the anionic and the cationic porphyrins. This property allows them to preserve the chiral structure, even when the matrix changes or loses its chiral conformation, demonstrating that these aggregates are capable of memorizing the chiral information. The remarkable properties of the title systems may find various applications (chiral amplification, discrimination, and separation) that, on the other hand, require a more strict control of the aggregate dimension. Here, we show that the central copper of these macrocycles is crucial for determining the aggregate dimension.  相似文献   

2.
Traces of biological contaminants that cannot be detected, but are expected to be present, in ultra-pure water suffice to select the emerging chiral sign in the spontaneous mirror symmetry breaking that takes place during the formation of the J-aggregates of the amphiphilic diprotonated tetrakis-(4-sulfonatophenyl)porphyrin (H(4)TPPS(4)(2-)). This is demonstrated by competition experiments with a chiral cationic surfactant. The sensitivity of the detection depends on the hierarchical control of the H(4)TPPS(4)(2-) self-aggregation.  相似文献   

3.
The extraordinary recognition specificity of lectins for carbohydrate ligands appears to be violated as they also bind to porphyrins and other noncarbohydrate ligands. In this study, crystal structures of meso-tetrasulfonatophenylporphyrin (H(2)TPPS) bound to peanut agglutinin (PNA) in the presence and absence of lactose were determined. The binding of H(2)TPPS with PNA involved 11 molecules of H(2)TPPS in different supramolecular stacking arrangements associated with a tetramer of PNA in the crystals of the PNA-H(2)TPPS binary complex as well as the PNA-H(2)TPPS-lactose ternary complex. The ternary complex involved lactose binding only to two subunits of the PNA tetramer, which did not have porphyrin interacting in the vicinity of the carbohydrate-binding site. Comparison of the two structures highlighted the plasticity of the carbohydrate-binding site expressed in terms of the conformational change in lactose binding. The unusual quaternary structure of PNA, which results in exposed protein-protein interaction sites, might be responsible for the porphyrin binding. The association of porphyrin in diverse oligomeric stacking arrangements observed in the PNA-H(2)TPPS complex suggested the possibility of protein-porphyrin aggregation under abnormal physiological conditions. The structures described here provide a possible native conformation of the carbohydrate-binding site of PNA in the absence of the ligand, highlight mapping of the unsaturated binding surfaces of PNA using porphyrin interactions, indicate new leads toward possible application of this lectin in photodynamic therapy, and exhibit diverse modes of porphyrin-lectin interactions with implications to porphyria, a disease that results from abnormal accumulation of porphyrins.  相似文献   

4.
The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.  相似文献   

5.
Vibrio vulnificus strain L-180, a clinical isolate, can obtain iron from a synthetic heme, iron-tetra(4-sulfonatophenyl)porphyrin (Fe-TPPS), as well as from a natural heme, protoheme. This assimilation of iron bound to TPPS was demonstrated to be a common property of V. vulnificus by testing a total of 27 strains isolated from both clinical and environmental sources. Strain L-180 could also utilize Fe-TCPP, but not Fe-TMPyP, as a sole iron source. TPPS or its complex with a metal ion reduced bacterial multiplication in the broth containing a minimum dose of Fe-TPPS. When inoculated into human serum supplemented with Fe-TCPP, L-180 could grow only in the presence of a protease from the same bacterium. In both TPPS and TCPP, each side chain of a porphyrin ring has a negative charge. Therefore, this negative charge may be important for interaction with an outer membrane receptor involving in a heme-assimilating system of V. vulnificus.  相似文献   

6.
In the last decade, photodynamic therapy has become an alternative method for the diagnosis and therapy of tumors. In human medicine hematoporphyrin derivatives, sulfonated hydrophilic meso-tetraphenylporphyrin (TPPS4) and an oligomer of hematoporphyrin (Photosan 3), are widely used. Chloroquine is used for the treatment of porphyria cutanea tarda for its power to release porphyrins from the liver tissue. The kinetics of two porphyrin photosensitizers TPPS4 and Photosan 3 in the skin and some organs as well as the effect of chloroquine on the porphyrin excretion and their accumulation in skin and organs of Wistar rats were studied. TPPS4 exhibited maximum fluorescence in skin 48 h after application with decreasing to basal level from the 8th to the 14th day. Maximum fluorescence was reached at 72 hours after Photosan 3 application and it decreased to basal level during 96 hours after application. TPPS4 caused significantly higher fluorescence compared to Photosan 3. Chloroquine after oral administration did not change the fluorescence of skin, but it significantly decreased the TPPS4 concentration in rat organs if chloroquine treatment started 3 days or 2 weeks after TPPS4 application. Chloroquine significantly decreased the serum TPPS4 concentration during the period of 28 days. Fluorescence of skin was significantly higher and lasted longer after application of TPPS4 compared to Photosan 3. Chloroquine after oral administration did not influence the fluorescence of the skin, but it significantly decreased the TPPS4 concentration in rat organs. This effect could be useful in photodynamic therapy for mobilizing exogenous porphyrins from tissues after parenteral photodynamic therapy.  相似文献   

7.
Oxidative stress induced by a copper-thiosemicarbazone complex   总被引:1,自引:0,他引:1  
Copper thiosemicarbazones cause considerable oxidative stress. This effect may be related to their cytotoxicity. In the present work, the chemical and cellular properties of a new ligand, pyridoxal thiosemicarbazone (H2T), and its copper(II) chelate (CuT) are assessed. CuT is toxic to cultured Ehrlich ascites tumor cells, producing nearly complete cell kill at drug/cell ratios of 2.5-4 nmol/10(5) cells in a monolayer culture over a 48-h treatment period. This concentration is at least 1 order of magnitude lower than those required for a similar degree of cytotoxicity by H2T or CuCl2. The following observations support the view that activated oxygen species are generated by interaction of CuT with Ehrlich cells: (1) Room-temperature electron spin resonance spectroscopy and atomic absorption measurements show rapid cellular uptake and CuT-thiol adduct formation. (2) Cellular thiol content is reduced. (3) High levels of DNA strand scission result from 1-h treatments of cells by concentrations of CuT that cause growth inhibition and toxicity. (4) The extent of strand scission can be increased by addition of superoxide dismutase and decreased by catalase or DMSO in the treatment medium. Catalase and DMSO do not inhibit the toxic effect of CuT. This suggests that DNA damage is not responsible for inhibition of cell proliferation by CuT.  相似文献   

8.
In this paper, we present a study about the influence of the porphyrin metal center and meso ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca2+. Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle.  相似文献   

9.
Interactions of water soluble porphyrins with Z-poly(dG-dC).   总被引:1,自引:1,他引:0       下载免费PDF全文
The water soluble porphyrin tetrakis(4-N-methylpyridyl)porphine (H2TMpyP) and its copper(II) derivative (CuTMpyP) convert Z-poly(dG-dC) to the B-form. For H2TMpyP, the fraction Z character (fr-Z) is given by fr-Z = 1.0 - 21 rO and for CuTMpyP, fr-Z = .94 - 12 rO where rO identical to [Porphyrin]O/[DNA]O. Neither the manganese(III) derivative of of this porphyrin (MnTMpyP) nor tetrakis(2-N-methylpyridyl)porphine (H2TMpyP-2) is nearly as effective at causing the conversion. The former two porphyrins have been shown to intercalate into B-poly(dG-dC) whereas the latter two porphyrins do not. The kinetics of the Z----B conversion are independent of porphyrin or poly(dG-dC) concentration for 1/rO greater than 6. At smaller values of 1/rO, the conversion rate is greatly increased for H2TMpyP and CuTMpyP. The interaction of these porphyrins with Z-poly(dG-dC) follows simple first order kinetics in this latter concentration range. It is proposed that for small values of 1/rO the sequence of events begins with a porphyrin-unassisted distortion of the Z-duplex (with a rate constant of 0.6 s-1) followed by a rapid uptake of porphyrin in what may be an intercalative mode. The porphyrin thus located in Z-regions brings about rapid conversion to the B-form. Binding of H2TMpyP or CuTMpyP to B-regions of a predominantly Z-strand leads to conversion of Z to B. However, this conversion process is considerably slower than when the porphyrins bind directly to Z-regions.  相似文献   

10.
The nuclear transport pathways of the photosensitizers meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) and meso-tetra(4-N-methylpyridyl)porphyrin (TMPyP) during photosensitization and oxidative stress were characterized in CT-26 murine colon carcinoma cells using fluorescence microscopy and multi-pixel spectral imaging. Prior to irradiation, TPPS4 and TMPyP localized mainly in the lysosomes, while irradiation or H2O2 treatment induced a relocalization into the nucleus and nucleoli. Flow cytometry analysis of isolated nuclei from the treated cells showed an increase in nuclear fluorescence accompanying the relocalization. Isolation and separation of the nuclear proteins according to molecular weight was performed using a sephadex G-100 column. The protein fractions exhibiting high fluorescence were separated by high performance liquid chromatography. Five major classes of proteins with a retention time of 1, 7, 11, 12 and 15 min were obtained. Each photosensitizer was associated with a distinct class of proteins. While TPPS4 fluorescence was detected in the protein fraction with a retention time of 11 min, TMPyP fluorescence was associated with a protein fraction having a retention time of 7 min. We conclude that although oxidative stress triggers entry into the nucleus of both TPPS4 and TMPyP, each sensitizer uses a distinct transport mechanism based on its chemical properties.  相似文献   

11.
The spectrophotometric properties of porphyrins are altered upon interaction with chlorophenols and other organochlorine pollutants. Meso-tetra(4-sulfonatophenyl)porphyrin (TPPS), zinc meso-tetra(4-sulfonato phenyl)porphyrin (Zn-TPPS), monosulfonate-tetraphenylporphyrin (TPPS1), meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl)porphyrin (C1TPP), meso-tetra(4-carboxyphenyl)porphyrin (C4TPP), and copper meso-tetra(4-carboxyphenyl)porphyrin (Cu-C4TPP) in solution exhibit a broad absorbance in the range 400-450 nm Soret region. The interaction of the above mentioned porphyrins in solution with pentachlorophenol (PCP) induces a red shift in the Soret spectrum with absorbance losses at 413, 418, 403, 405, 407, and 404 nm, respectively, and the appearance of new peaks at 421, 427, 431, 416, 417, and 416 nm, respectively. The intensity of the Soret spectral change is proportional to the pentachlorophenol concentration with a detection limit of 1, 0.5, 1.16, 1, 0.5, and 0.5 ppb, respectively. The interaction of (C4TPP) and (Cu-C4TPP) in solution with PCP shows to concentration dependent for concentrations less than 4 ppb the dependence was log-linear. However, for concentrations greater than 4 ppb the relation was linear. Monosulfonate-tetraphenylporphyrin immobilized as a monolayer on a Kimwipe tissue exhibits an absorbance peak in the Soret region at 422 nm. The interaction of the porphyrin with PCP induces a red shift in the Soret spectrum with absorbance loss at 419 nm and the appearance of new peaks at 446 nm. The intensity of the Soret spectral change is proportional to the log of PCP concentration. The detection limit with immobilized TPPS1 for PCP is 0.5 ppb. These results suggest the potential for development of spectrophotometric chemosensor for PCP residues in water with detection limits less than US EPA maximum contaminate level (MCL) of 1 ppb. The immobilized TPPS1 on the Kimwipe will make it possible to develop a wiping sensors to monitor the PCP or other pesticides residues on the vegetables or wood products.  相似文献   

12.
Noncovalent interactions of poly(L-lysine) (PL), oligopeptides L-lysyl-L-alanyl-L-alanine and (L-lysyl-L-alanyl-L-alanine)(2) with meso-tetrakis(4-sulfonatophenyl)porphine (TPPS), and poly(L-glutamic acid) (PLGA) with meso-tetrakis(1-methyl-4-pyridyl)porphine tetra-p-tosylate (TMPyP) in aqueous solutions have been studied using combination of spectroscopic methods: Vibrational circular dichroism (VCD) spectroscopy in the mid-infrared region provides a direct information on conformational changes of the polypeptides and oligopeptides caused by interactions with porphyrins; ultraviolet-visible absorption, fluorescence, and electronic circular dichroism (ECD) reveal the aggregation characterization of the porphyrin part of the complexes. Interactions of TPPS with tripeptide, hexapeptide, and PL containing about ten amino acid residues in the molecular chain are accompanied with the changes of VCD patterns in the amide I' region. In these cases, the conformation of the oligopeptide part of complexes is obviously influenced by interactions with TPPS and partial changes of random coil structure are observed in VCD. When PL was composed of the hundreds of lysine residues, just a weak intensity decrease was detected and the shape of VCD spectrum typical for the random coil structure was preserved. As follows from the uv-vis absorption and fluorescence spectra, porphyrin molecules are attached to peptides by electrostatic interaction as a monomer or dimer and interaction between porphyrin and peptide depends on the polypeptide chain length. For the PLGA-TMPyP system with PLGA containing from tens to hundreds of glutamic acid residues in the chain, the VCD spectra were unchanged when TMPyP was presented in the aqueous solution of PLGA and random coil conformation of PLGA-TMPyP aggregates was preserved.  相似文献   

13.
To extend the model that explains why and how much absorption flattening (AF) influences circular dichroism (CD) signals, we have investigated the interesting case of exciton CD in the Soret region of a noncovalent complex formed by (Delta-RuPhen(3))(2+) and the tetraanionic porphyrin H(2)TPPS. Different concentrations have been studied by using an AF emulator and spectra simulation. The CD spectra of this compound occasionally show distortions in the solution sampling mode with the increase of concentration; the inhomogeneous distribution in the cell volume is due to aggregation and is the source of the AF effect. On the basis of these results, we conclude that AF is an important cause of distortions in CD spectra for Delta-RuPhen(3) . H(2)TPPS complexes and might affect the CD bands of other aggregated systems as well.  相似文献   

14.
Andrews K  McMillin DR 《Biochemistry》2008,47(4):1117-1125
Positively charged N-methylpyridinium-4-yl substituents promote the binding of a porphyrin to DNA, but they also impose steric constraints. To clarify when intercalative binding is most feasible, this report describes syntheses and binding studies of two tricationic ligands: 5,10,15-tri(N-methylpyridinium-4-yl)porphyrin (H2Tri4) and 5-methyl-10,15,20-tri(N-methylpyridinium-4-yl)porphyrin (H2MeTri4). Techniques used to characterize the binding interactions include viscometry and spectroscopic studies of the absorption, emission, and circular dichroism. The striking observation is that intercalation is the only detectable binding motif when the trisubstituted porphyrin H2Tri4 combines with [poly(dA-dT)]2, [poly(dG-dC)]2, or salmon testes DNA. H2Tri4 is, however, a limiting case. Parallel studies of H2MeTri4 and the copper(II) derivative Cu(MeTri4) reveal that external binding to [poly(dA-dT)]2 becomes important when a fourth meso substituent is present, even one as small as the methyl group. Intercalation of H2Tri4 is sterically feasible because two N-methylpyridinium-4-yl substituents can reside in the major groove, though the charge alignment is not optimal. However, the presence of the fourth substituent on H2MeTri4 further destabilizes the intercalated form, and external binding becomes competitive for a flexible host like [poly(dA-dT)]2.  相似文献   

15.
The mechanism of transport of the tumor localizing agent, meso-tetra(p-sulfophenyl)porphine (TPPS4), was investigated in Vero and HEp-2 cells in vitro. Vero cells proved to be basically impermeable to the porphyrin, but a slow transport was observed. The uptake was linear with time and appeared to be carrier mediated, as it was strongly inhibited by cyanide or low temperature and demonstrated saturation kinetics. Transport in HEp-2 cells was more rapid and non-linear, reaching a plateau after about 2 h. Analysis of this uptake over a 20-fold range of porphyrin concentration revealed it to be biphasic. A low affinity, high capacity component appeared to be unsaturable and was unaffected by low temperature or metabolic inhibitors. This system is probably one of a passive diffusion. The high affinity, low capacity phase is probably carrier mediated. The tumor cells appear to be "leaky" to the porphyrin, with respect to the Vero cells. This may explain part of the localizing ability of TPPS4.  相似文献   

16.
Monosulfonate tetraphenyl porphyrin (TPPS(1)) forms a 1:1 complex with electric eel acetylcholinesterase (AChE) inducing a loss in TPPS(1) absorbance at 402 nm and the appearance of a new absorbance centered at 442 nm. In the presence of AChE, the fluorescence of TPPS(1) at 652 nm is slightly narrowed, with the maximal 652 nm fluorescence shifted from 407 to 412 nm excitation wavelength. The fluorescence peak of TPPS(1) at 712 nm shifts to 716 nm in the presence of AChE. TPPS(1) is a competitive inhibitor of AChE. The addition of acetylcholine iodide (AChI) or the competitive inhibitor tetracaine to the preformed AChE-TPPS(1) complex results in a loss of the 442 nm absorbance band as the porphyrin is displaced from AChE. The absorbance peak does not decrease in the presence of procaine, a non-competitive inhibitor.  相似文献   

17.
The aggregate morphology of meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS(4)) in aqueous solution is investigated by using small angle x-ray scattering (SAXS) technique. Measurements were performed at pH 4.0 and 9.0 to monitor the pH influence on the structural parameters of the aggregates. Radii of gyration were obtained from distance distribution functions p(r) analysis. The experimental data of TPPS(4) at pH 4.0 showed well-defined oscillations characteristic of large aggregates in contrast to the SAXS curve of 5 mM TPPS(4) at pH 9.0, where both a significant decrease in the intensity and the disappearance of the oscillation peaks suggest the dissociation of the aggregate. A 340-A long "hollow" cylinder with shell thickness of 20 A, compatible to the porphyrin molecule dimension, represents well the scattering curve of the aggregates at pH 4.0. According to the fitting parameters, 26 porphyrin molecules self-associate into a ringlike configuration in the plane of the cylinder cross-section. The total number of porphyrin molecules in the whole aggregate was also estimated as approximately 3000. The model compatible to SAXS data of a hollow cylinder with J-aggregation in the cross-section and H-aggregation (columnar stacking) between the cylinder layers is consistent with optical absorption spectroscopic data both in the literature and obtained in this work.  相似文献   

18.
Radical production during the photolysis of deaerated aqueous alkaline solutions (pH 11) of some water-soluble porphyrins was investigated. Metal-free and metallo complexes of tetrakis (4-N-methylpyridyl)porphyrin (TMPyP) and tetra (4-sulphonatophenyl)porphyrin (TPPS4) were studied. Evidence for the formation of OH radicals during photolysis at 615, 545, 435, 408 and 335 nm of Fe(III) TPPS4 is presented. Fe(III) TMPyP, Mn(III) TPPS4 and Mn(III) TMPyP also gave OH radicals but only during photolysis at 335 nm. The method of spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 4-pyridyl-1-oxide-N-tert-butylnitrone (POBN) combined with e.s.r. was used for the detection of OH, H and hydrated electrons. With the spin trap DMPO, photolysis generated DMPO-OH adducts under certain conditions but no DMPO-H adducts could be observed. With POBN, no POBN-H adducts were found. The formation of OH was confirmed by studying competition reactions for OH between the spin traps and OH scavengers (formate, isopropanol) and the concomitant formation of the CO-2 adduct and the (CH3)2COH adduct with both DMPO and POBN. The photochemical generation of OH radicals was pH dependent; at pH 7.5 no OH radicals could be detected. Photolysis (615-335 nm) of dicyanocomplexes of the Fe(III) porphyrins did not produce OH radicals. When corresponding Cu(II), Ni(II), Zn(II) and metal-free porphyrins were photolysed at 615 and 335 nm, no OH radicals could be spin trapped. These results tend to associate the well-known phenomenon of photoreduction of Fe(III) and Mn(III) porphyrins with the formation of OH radicals. This process is described mainly as the photoreduction of the metal ion by the ligand-bound hydroxyl ion via an intramolecular process.  相似文献   

19.
The induced chirality of achiral binary aggregates of meso-tetrakis(4-N-methylpyridyl)porphyrine (TMPyP) and meso-tetrakis(4-sulfonatophenyl)porphyrine (TPPS) on a deoxyribonucleic acid (DNA) matrix was investigated. Although the negatively charged TPPS did not show induced chirality in DNA solution due to the electrostatic repulsion, induced chirality was obtained through the addition of a positively charged TMPyP. It was confirmed that the induced chirality was due to the binary complex formation between TPPS and TMPyP on the DNA matrix. Moreover, the induced chirality depended on the relative molar ratio of TPPS to TMPyP (r) and the binding modes of the complex to DNA. When r<1, induced circular dichroism (CD) spectrum of the ternary complex was similar to that of intercalated TMPyP into DNA. For r=1, the induced CD spectrum showed a reversed biphasic signal due to the complex of TMPyP and TPPS stacking along the DNA surface. At a higher r value (>1), there was an induced CD signal at 482 nm attributed to a lateral shifted arrangement of heteroaggregate of TPPS and TMPyP on DNA matrix where TMPyP acted as a spacer to mediate the growth of heteroaggregates. Increasing the concentration of sodium chloride in the solution would favor the formation of the lateral shifted arrangement of heteroaggregate of TPPS and TMPyP. The resonance light scattering (RLS) spectra confirmed the above results. Analysis of the CD spectral changes in DNA conformation showed that during the binary complex formation of TPPS and TMPyP, the intercalated TMPyP could be 'pulled out' from the base pairs of DNA, which might be useful in gene therapy. A model was proposed to account for these observations.  相似文献   

20.
The toxic and phototoxic effects of tetraphenylporphinesulphonate (TPPS4) and haematoporphyrin derivative (HpD) have been examined in vitro. TPPS4 was found to have less dark toxicity to the cells than HpD as measured by inhibition of cell multiplication and colony formation at comparable extracellular concentrations. TPPS4 was also less effective than was HpD in photoinactivating NHIK 3025 cells by more than a factor 2 which should be expected on the basis of cellular uptake. Spectrofluorometric data suggest that HpD in cells interacts more with lipids than TPPS4. This might explain the large photosensitizing effect of HpD compared to TPPS4 since the lifetime of singlet oxygen is about a factor of 10 longer in a lipid environment than in an aqueous environment. The uptake of TPPS4 and HpD by cancer cells in vitro does not correlate with previous in vivo data, indicating retention of TPPS4 in the tumour stroma. This makes in vitro/in vivo extrapolation difficult with regard to the use of TPPS4 as an agent for photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号