首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spittlebug superfamily Cercopoidea (Hemiptera: Cicadomorpha) comprises approximately 3000 phytophagous species (including some economically important pests of grass crops) classified among the families Cercopidae, Aphrophoridae, Epipygidae, Clastopteridae and Machaerotidae. However, the monophyly of these taxa has never been tested and the evolutionary relationships among these major lineages are unknown. Presented here are the results of the first ever phylogenetic investigation of the higher‐level relationships within Cercopoidea, based on DNA nucleotide sequence data from six loci (18S rDNA, 28S rDNA, histone 3, wingless, cytochrome oxidase I and cytochrome oxidase II) generated from exemplars of 109 spittlebug species representing all five described families, seven of eight subfamilies and 61 genera (eight additional exemplars, representing a selection of other Auchenorrhyncha taxa, were included as outgroups). The resulting topologies are used to evaluate the monophyly of each cercopoid family, and further to calculate divergence date estimates to examine the chronological origins and historical diversification of Cercopoidea. The results of this investigation suggest that: (i) four of the five described families are monophyletic; Epipygidae was recovered consistently as originating within Aphrophoridae; (ii) the exclusively Old World Machaerotidae is the most anciently diversified family of extant spittlebugs; (iii) New World Cercopidae (i.e. Ischnorhininae) constitute a derived monophyletic lineage; (iv) the genus Microsargane Fowler, classified currently within Aphrophoridae, actually belongs within Cercopidae; and (v) the origins of the major spittlebug lineages probably coincided with the breakup of Pangaea and, subsequently, Gondwana, as well as major floristic diversification such as the rise of angiosperms.  相似文献   

2.
The phylogeny of Celastraceae tribe Celastreae, which includes about 350 species of trees and shrubs in 15 genera, was inferred in a simultaneous analysis of morphological characters together with nuclear (ITS and 26S rDNA) and plastid (matK, trnL-F) genes. A strong correlation was found between the geography of the species sampled and their inferred relationships. Species of Maytenus and Gymnosporia from different regions were resolved as polyphyletic groups. Maytenus was resolved in three lineages (New World, African, and Austral-Pacific), while Gymnosporia was resolved in two lineages (New World and Old World). Putterlickia was resolved as nested within the Old World Gymnosporia. Catha edulis (qat, khat) was resolved as sister to the clade of Allocassine, Cassine, Lauridia, and Maurocenia. Gymnosporia cassinoides, which is reportedly chewed as a stimulant in the Canary Islands, was resolved as a derived member of Gymnosporia and is more closely related to Lydenburgia and Putterlickia than it is to Catha. Therefore, all eight of these genera are candidates for containing cathinone- and/or cathine-related alkaloids.  相似文献   

3.
《Insect Biochemistry》1989,19(8):737-740
A series of waxes produced by three fulgorid species are shown to be mixtures of homologs indentical to those previously found in the unrelated cochineal insect Dactylopius confusus. Using direct insertion probe mass spectrometry, the intact wax was found to give characteristic spectra obviating the need for extensive hydrolysis. The utility of these compounds as taxonomic characters in Fulgoridae is discussed.  相似文献   

4.
The Vernonieae is one of the major tribes of the largest family of flowering plants, the sunflower family (Compositae or Asteraceae), with ca. 25,000 species. While the family's basal members (the Barnadesioideae) are found in South America, the tribe Vernonieae originated in the area of southern Africa/Madagascar. Its sister tribe, the Liabeae, is New World, however. This is the only such New/Old World sister tribe pairing anywhere in the family. The Vernonieae is now found on islands and continents worldwide and includes more than 1500 taxa. The Vernonieae has been called the "evil tribe" because overlapping character states make taxonomic delimitations difficult at all levels from the species to the subtribe for the majority of taxa. Juxtaposed with these difficult-to-separate entities are monotypic genera with highly distinctive morphologies and no obvious affinities to any other members of the tribe. The taxonomic frustration generated by these contrary circumstances has resulted in a lack of any phylogeny for the tribe until now. A combined approach using DNA sequence data from two chloroplast regions, the ndhF gene and the noncoding spacer trnL-F, and from the nuclear rDNA ITS region for 90 taxa from throughout the world was used to reconstruct the evolutionary history of the tribe. The data were analyzed separately and in combination using maximum parsimony (MP), minimum evolution neighbor-joining (NJ), and Bayesian analysis, the latter producing the best resolved and most strongly supported tree. In general, the phylogeny shows Old World taxa to be basal and New World taxa to be derived, but this is not always the case. Old and New World species are found together in two separate and only distantly related clades. This is best explained by long-distance dispersal with a minimum of two trans-oceanic exchanges. Meso/Central America has had an important role in ancient dispersals between the Old and New World and more recent movements from South to North America in the New World.  相似文献   

5.
6.
The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically.  相似文献   

7.
Recent molecular studies on passerine birds have highlighted numerous discrepancies between traditional classification and the phylogenetic relationships recovered from sequence data. Among the traditional families that were shown to be highly polyphyletic are the Muscicapidae Old World flycatcher. This family formerly included all Old World passerines that forage on small insects by performing short sallies from a perch. Genera previously allocated to the Muscicapidae are now thought to belong to at least seven unrelated lineages. While the peculiarity of most of these lineages has been previously recognized by Linnean classification, usually at the rank of families, one, the so-called Stenostiridae, a clade comprising three Afrotropical and Indo-Malayan genera, has only recently been discovered. Here, we address in greater detail the phylogenetic relationships and biogeographic history of the Stenostiridae using a combination of mitochondrial and nuclear data. Our analyses revealed that one species, Rhipidura hypoxantha, previously attributed to the Rhipiduridae (fantails), is in fact a member of the Stenostiridae radiation and sister to the South African endemic genus Stenostira (Fairy Flycatcher). Our dating analyses, performed in a relative-time framework, suggest that the splits between Stenostira/R. hypoxantha and Culicicapa/Elminia occurred synchronously. Given that the Stenostiridae assemblage has been consistently recovered by independent studies, we clarify its taxonomic validity under the rules of the International Code of Zoological Nomenclature.  相似文献   

8.
Chloroplast sequences spanning rps7 to 23S rDNA in Arceuthobium campylopodum and A. pendens were generated and compared to Arabidopsis and seven other parasitic plants. Pseudogenes for trnV, trnI (GAU), and trnA (UGC) were seen in both Arceuthobium species, paralleling the situation in the holoparasite Epifagus (Orobanchaceae). These tRNA genes were intact, however, in two other members of Santalales (Ximenia and Phoradendron). The 16S–23S rDNA intergenic spacer was sequenced for 13 additional species of Arceuthobium representing both Old and New World taxa. All species examined had pseudogenes for trnI and trnA, however, deletions in these tRNAs have occurred in different regions among various lineages of the genus. The aligned 16S–23S rDNA intergenic spacer was analyzed using maximum parsimony and compared with nuclear ITS rDNA using a similar suite of species. Overall species relationships were generally congruent, although two cases of potential lineage sorting or chloroplast capture were detected. Arceuthobium is a valuable genetic model to constrast with holoparasites because, despite significant alteration and truncation of its plastome, it still maintains photosynthetic function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

10.
The planthopper superfamily Fulgoroidea (Insecta: Hemiptera) comprises approximately 20 described insect families, depending on which classification is followed. Multiple competing hypotheses of fulgoroid phylogeny have been published, based on either morphological character coding or DNA sequence data; however, those hypotheses disagree in several key aspects regarding the evolution of planthoppers. The current paper seeks to test these hypotheses, including the Asche (Asche, M. 1987. Preliminary thoughts on the phylogeny of Fulgoromorpha (Homoptera Auchenorrhyncha). In: Proceedings of the 6th Auchenorrhyncha Meeting, Turin, Italy, 7-11 September, 1987, pp. 47-53.) hypothesis of a trend in ovipositor structure, which may be correlated with planthopper feeding ecology. Presented here are phylogenetic reconstructions of Fulgoroidea based on analysis of DNA nucleotide sequence data from four loci (18S rDNA, 28S rDNA, Histone 3, and Wingless) sequenced from 83 exemplar taxa representing 18 planthopper families and outgroups. Data sets were analyzed separately and in various combinations under the maximum parsimony criterion, and the total combined dataset was analyzed via both maximum parsimony and partitioned Bayesian criteria; results of the combined analyses were concordant across reconstruction paradigms. Relationships recovered suggest several major planthopper lineages, including: (1) Delphacidae+Cixiidae; (2) Kinnaridae+Meenoplidae; (3) Fulgoridae+Dictyopharidae; (4) Lophopidae+Eurybrachidae (possibly+Flatidae); (5) Ricaniidae+Caliscelidae (possibly+Tropiduchidae). Results also suggest the placement of Achilixiidae outside of Cixiidae and of Tettigometridae as one of the more recently diversified lineages within Fulgoroidea. The resulting phylogeny supports Asche's (1987) hypothesis of a functional trend in ovipositor structure across families.  相似文献   

11.
Genetic differentiation and evolutionary relationships were surveyed on 12 species of the Old and seven species of the New World Emberizidae by allozyme electrophoresis of 20 loci. Genetic variability of the Emberizidae is similar to those of the other Passeriformes. The degree of genetic differentiation in the family were large among species of the genus Emberiza of the Old World, and also among genera of the New World Emberizidae. Evolutionary relationships of the Emberizidae based on these genetic distances differed considerably from those of previous publications on some points: (1) Emberiza tristrami, E. elegans, E. bruniceps and E. schoeniclus were genetically much diverged from the other Emberiza as a species of the same genus. (2) Some genetic distances between Emberiza were larger than distances between subfamilies of the New World Emberizidae. (3) Species of the Cardinarinae examined genetically, belonged to the Emberizinae of the New World. Genetic data did not support the current classification that the Old World buntings arose from the New World forms by recent colonization. Discussion was made on the evolution of the Old and New World Emberizidae from the genetic view point.  相似文献   

12.
Premise of the study: Two New World species of Bambusoideae, Arundinaria gigantea and Crytpochloa strictiflora, were investigated in a phylogenomic context. Complete plastome sequences have been previously determined and analyzed for nine bambusoid species that exclusively represent Old World lineages. The addition of New World species provides more complete information on relationships within Bambusoideae. • Methods: Plastomes from A. gigantea and C. strictiflora were sequenced using Sanger methods. Phylogenomic and divergence estimate analyses were conducted on both species with 23 other Poaceae. • Key Results: Phylogenomic and divergence analyses suggested that A. gigantea diverged from within Arundinarieae between 1.94–3.92 mya and that C. strictiflora diverged as the sister to tropical woody species between 24.83 and 40.22 mya. These results are correlated with modern relative diversities in the two lineages. • Conclusions: The two New World bamboos show unique plastome features accumulated and maintained in biogeographic isolation from Old World taxa. The overall evidence for A. gigantea is consistent with recent dispersal, and that for C. strictiflora is consistent with vicariance.  相似文献   

13.
The evolution of genome size and ribosomal DNA (rDNA) locus organization was analysed in 23 diploid species of Chenopodium s.l., all of which share the same base chromosome number of x = 9. Phylogenetic relationships among these species were inferred from plastid and nuclear ribosomal internal transcribed spacer (nrITS) DNA sequences. The molecular phylogenetic analyses assigned all analysed species of Chenopodium s.l. to six evolutionary lineages, corresponding to the recent new generic taxonomic treatment of Chenopodium s.l. The distribution of rDNA loci for four species is presented here for the first time using fluorescence in situ hybridization (FISH) with 5S and 35S rDNA probes. Most of the 23 analysed diploid Chenopodium spp. possessed a single subterminally located 35S rDNA locus, except for three species which possessed two 35S rDNA loci. One or two 5S rDNA loci were typically localized subterminally on chromosomes, rarely interstitially. Analyses of rDNA locus numbers in a phylogenetic context resulted in the reconstruction of one locus each of 35S rDNA and 5S rDNA, both in subterminal positions, as the ancestral state. Genome sizes determined using flow cytometry were relatively small (2C value < 2.8 pg), ranging from 0.734 pg in C. schraderianum to 2.721 pg in C. californicum (nearly four‐fold difference), and were often conserved within major phylogenetic lineages, suggesting an adaptive value. The reconstructed ancestral genome size was small for all evolutionary lineages, and changes have probably coincided with the divergence of major lineages. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 218–235.  相似文献   

14.
Chloroplast DNA restriction site variation was examined for 35 taxa in theVernonieae and four outgroup tribes, using 17 restriction enzymes mapped for ca. 900 restriction sites per species; 139 mutations were found to be phylogenetically informative. Phylogenetic trees were constructed using Wagner and weighted parsimony, and evaluated by bootstrap and decay analyses. Relationships of Old and New World taxa indicate complex geographical relationships; there was no clear geographic separation by hemisphere. The relationships between Old and New World Vernonias found here support prior morphological analyses. The sister group to all New and most Old World taxa was composed of a small group of Old World species including yellow-flowered, trinervate-leaved species previously postulated to be basal in the tribe. The majority of both New and Old World taxa are derived from a lineage beginning with the monotypic genusStokesia, an endemic of the southeastern United States. The genusVernonia was also found to be paraphyletic within both the New and Old World. Available data do not support either the separation ofVernonia or the tribeVernonieae into geographically distinct lineages. The pattern of relationships within theVernonieae for taxa from North America, Asia, Africa, Central and South America is most similar to that of several other groups of both plants and animals with a boreotropical origin, rather than an origin in Gondwanaland. Such a pattern of distribution suggests more ancient vicariant events than are routinely postulated for theAsteraceae.  相似文献   

15.
To investigate the phylogenetic relationships between the New World Sciurus and the Old World Sciurus and their biogeographic history, the partial mitochondrial cytochrome b gene sequences (1,040 base pairs) were analyzed on six Sciurus species: S. aberti, S. carolinensis, S. lis, S. niger, S. stramineus, and S. vulgaris. Phylogenetic trees (maximum parsimony, neighbor-joining, and maximum likelihood methods) commonly showed two groups with high bootstrap values (73-100%): one consisting of the New World Sciurus and the other consisting of the Old World Sciurus. Genetic distances among the New World Sciurus species were remarkably larger than that between two Sciurus species of the Old World, suggesting the earlier radiation of the New World Sciurus than the Old World Sciurus.  相似文献   

16.
Lens wet weights, soluble protein, and activities of γ-glutiamylcysteine synthetase, glutathione synthetase, glutathione peroxidase, and glutathione reductase were determined in primate lenses. The primary sources of lenses were middle-aged adult animals. The Primates, from 23 genera, were categorized into six superfamilies: hominoids (five species), Old World monkeys (seven species), New World monkeys (five species), tarsiers (two species), lemurs (six species), and lorisids (three species). Significant differences between various groups or combinations of groups were noted for γ-glutamylcysteine synthetase, glutathione peroxidase, and glutathione reductase activities. Lenticular γ-glutamylcysteine synthetase activity was very low in the Old World simian lenses and highest in the prosimians. Glutathione peroxidase activity was extraordinarily high in lenses of Old World monkeys. Glutathione reductase activity was low in all the prosimians but tenfold higher in hominoid lenses with intermediate values in monkeys of both the Old World and New World. Glutathione synthetase activity was variable, and no clear pattern which might be useful for primate classification was noted. Lenticular activity ratios of glutathione synthetase:γ-glutamylcysteine synthetase were highest in the Old World simians and lowest in the prosimians. These data with emphasis upon Aotus and the tarsiers were examined with regard to phylogenetic relationships. © 1994 Wiley-Liss, Inc.  相似文献   

17.
We present an updated diagnosis of 13Streptocephalus species of North America. Three new species are included. A key to the species is provided.The phylogeny of the group is discussed on the basis of (1) a systematic approach (Maeda-Martinezet al., 1995; this volume), which considers the entire distal antennal outgrowth, the frontal appendage, and the morphology of the ovaries as essential in defining different genetic lineages or species-groups, and (2) a cladistic analysis. We suggest that of nine monophyletic groups, three are represented in both the Old and New World. Thus, contrary to former disparsalist hypotheses, we argue that the New World species represent relict forms of ancestral groups fragmented by continental drift (vicariance model).  相似文献   

18.
Sequence data from a portion of the external transcribed spacer (ETS) and internal transcribed spacers (ITS-1 and ITS-2) of 18S-26S nuclear ribosomal DNA were used to resolve historical biogeography and ecology of true thistles (Cirsium, Cardueae, Compositae) in the New World. The 650 base-pair, 3' portion of the ETS examined here showed a level of variation across taxa similar to that of the ITS sequences included. A maximum-likelihood tree based on combined ETS and ITS sequences leads us to suggest that the New World species of true thistles constitute a major lineage, which in turn comprises several smaller lineages. A western North American lineage shows weak quartet-puzzling support, but includes a well-supported lineage of species endemic to the California Floristic Province. Comparisons of this Californian lineage with other neoendemic angiosperm groups of the region show that the Californian Cirsium lineage exhibits unusually high ecological diversity for a group displaying such low levels of rDNA sequence divergence across taxa. Similarly low levels of sequence divergence were found throughout the New World Cirsium lineage. These results indicate either that Cirsium underwent a rapid ecological radiation in North America, or that rDNA evolution in North American Cirsium has been highly conservative.  相似文献   

19.
Breed, W.G. and Leigh, C.M. 2010. The spermatozoon of the Old Endemic Australo‐Papuan and Philippine rodents – its morphological diversity and evolution.—Acta Zoologica (Stockholm) 91 : 279–294 The spermatozoon of most murine rodents contains a head in which there is a characteristic apical hook, whereas most old endemic Australian murines, which are part of a broader group of species that also occur in New Guinea and the Philippines, have a far more complex sperm form with two additional ventral processes. Here we ask the question: what is the sperm morphology of the New Guinea and Philippines species and what are the trends in evolutionary changes of sperm form within this group? The results show that, within New Guinea, most species have a highly complex sperm morphology like the Australian rodents, but within the Pogonomys Division some species have a simpler sperm morphology with no ventral processes. Amongst the Philippines species, many have a sperm head with a single apical hook, but in three Apomys species the sperm head contains two additional small ventral processes, with two others having cockle‐shaped sperm heads. When these findings are plotted on a molecular phylogeny, the results suggest that independent and convergent evolution of highly complex sperm heads containing two ventral processes has evolved in several separate lineages. These accessory structures may support the sperm head apical hook during egg coat penetration.  相似文献   

20.
The generic classification of moths of the tribe Macariini Guenée is reviewed critically, and a revised classification is presented. The review is based on a survey of species across the taxonomic and geographical range of the tribe. In the new framework, the number of genera is reduced considerably. Two genera are very large: Macaria Curtis (mainly New World) and Chiasmia Hübner (largely Old World) together include over half of all macariine species. Twenty-three genera are accepted in the tribe; the identity of two genera remain uncertain. No single character defines the tribe, but diagnostic features include one or more of the following: the presence of enlarged setae ('horns') on the uncus in the male genitalia; a divided valva; and a modified condition of sternum A8 in the male. The taxonomic history of the tribe is reviewed briefly and the problems of previous systems are explained mainly by the regional approach adopted. A diagnosis is presented for each genus. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 257–315.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号