首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (C2H4+ H2(C2H2))/15N2 ratios of 15 clover- Rhizobium symbionts. soybean, and black medick symbionts were measured. Relative efficiency based on the C2H4 production and on 15N2 incorporation were compared, and in most symbionts there was little difference between the two measures of relative efficiency. Total measurable electron flux through nitrogenase during acetylene reduction and 15N2 incorporation were nearly equal for most symbionts studied. The relative efficiency and the (C2H4+ H2(C2H2))/15N2 ratio showed an inverse correlation. Use of this ratio appears preferable to use of the ratio of C2H2 reduction/N2 reduction. Some evolution of H2 was observed in the presence of C2H2.  相似文献   

2.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

3.
Generation of H2O2 in Brain Mitochondria   总被引:2,自引:2,他引:0  
Generation of H2O2 by rat brain mitochondria using succinate and glycerol-1-phosphate as substrates has been demonstrated. Earlier workers were unable to detect this activity in sucrose-Tris buffer. We found that this was due to a lag in the expression of activity in sucrose medium. Using phosphate buffer (50 mM), good rates are now obtained. Generation of H2O2 by rat brain mitochondria required the presence of antimycin A and was dependent on the substrates succinate and glycerol-1-phosphate. Low rates were obtained with NAD+-linked substrates and none with choline, glutamate, and NADH. The Km and Vmax values for H2O2 generation were considerably lower than the corresponding values for the respective dehydrogenase activity, measured by dye reduction. Oxygen-radical scavengers inhibited H2O2 generation, suggesting oxygen radical involvement. Depletion of ubiquinone from mitochondria resulted in loss of H2O2 generation. Reconstitution of such depleted particles with ubiquinone restored the capacity to generate H2O2 in a concentration-dependent manner. Levels of H2O2 production were found to be maximal in cerebellum. Brain mitochondria from rabbit, hamster, mouse, and guinea pig also have the capacity to generate H2O2 on oxidation of glycerol-1-phosphate.  相似文献   

4.
The relation between light-induced electron transport with NO3?, NO2? or CO2 as acceptors, ATP pools and transients in dark-light-dark transitions, and phosphate uptake was examined in phosphorus-starved cells of Scenedesmus obtusiusculus Chod. Net O2 evolution at saturating light was around 6 μmol × (mg chlorophyll × h)?1 in the absence of any acceptor, but reached average rates of 21, 65 and 145 μmol × (mg chlorophyll × h)?1 upon additions of 5 mM KNO3, KNO2 and KHCO3, respectively. The apparent rate of photophosphorylation in transition experiments was only a few percent of the rate calculated from CO2-dependent O2 evolution. Blocking non-cyclic electron transport with DCMU inhibited phosphate assimilation, but acceleration of non-cyclic electron flow by addition of NO3? or NO2? did not stimulate phosphate assimilation as compared to the situation without an acceptor. A functional non-cyclic system might primarily be needed for an efficient shuttle transfer of ATP from the chloroplast to the cytoplasm. An inhibition of the non-cyclic system due to lack of reducible substrates accelerates the cyclic system and thus indicates a regulation mechanism between the two systems.  相似文献   

5.
Preliminary studies have indicated that after addition of C2H2 there is a rapid decline in nitrogenase activity in the nodules of Datisca glomerata . The present work was undertaken to determine whether (1) there is also a decline in respiration and (2) the decline is associated with the cessation of ammonia production. The rates of C2H4 and CO2 evolution by nodulated root systems of Datisca were measured as a function of time after exposure to C2H2. The peak rate of C2H4 evolution occurred at 30 s after C2H2 exposure, while the rate of CO2 evolution started to decline at 60 s after exposure to C2H2. Incubation of nodules in a gas mixture containing Ar also caused a decline in CO2 evolution. Further, pretreatment with Ar eliminated most of the C2H2-induced decline in nitrogenase activity and CO2 evolution. These C2H2- and Ar-induced declines in Datisca nodules are more rapid than those reported in any other nodules. They are evidence that continued ammonia formation is essential for maintenance of normal nitrogenase activity in Datisca nodules.  相似文献   

6.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

7.
Abstract The regenerated shoots from sodium sulphate (Na2SO4) grown callus of tobacco (Nicotiana tabacum L. cv. Wisconsin 38) were evaluated for Na2SO4 tolerance based on shoot proliferation and rooting in vitro, and seed germination in vivo in response to Na2SO4. An increase in Na2SO4 concentration resulted in significantly decreasing shoot fresh weight, number of shoots, shoot length and leaf size, and increasing per cent shoot dry weight of both control and Na2SO4-grown cultures. In rooting, shoots of Na2SO4-grown cultures exhibited the highest per cent rooting (85%) in the presence of 1% w/v Na2SO4. However, per cent rooting, root number per rooted cutting and root fresh weight decreased significantly with increasing Na2SO4 concentration when shoots were transferred to the medium in the absence of Na2SO4 for 4-monthly passages. Following acclimatization of the rooted shoots of Na2SO4-grown cultures, phenotypic variation was observed during growth and development. There were 13.2% sterile plants. Fertile plants were sorted into normal (N), tolerant (T), and sensitive (S) categories and the respective percentages of plants were 31.6, 44.7 and 10.5, based on per cent germination, germination velocity index and seedling survival to Na2SO4. The response of N, T and S types to Na2SO4 in subsequent shoot proliferation was similar to that of seed germination.  相似文献   

8.
The present study aims at clarifying the impact of oxidative stress on type B trichothecene production. The responses to hydrogen peroxide (H2O2) of an array of Fusarium graminearum and Fusarium culmorum strains were compared, both species carrying either the chemotype deoxynivalenol (DON) or nivalenol (NIV). In both cases, levels of in vitro toxin production are greatly influenced by the oxidative parameters of the medium. A 0.5 mM H2O2 stress induces a two- to 50-fold enhancement of DON and acetyldeoxynivalenol production, whereas the same treatment results in a 2.4- to sevenfold decrease in NIV and fusarenone X accumulation. Different effects of oxidative stress on toxin production are the result of a variation in Fusarium 's antioxidant defence responses according to the chemotype of the isolate. Compared with DON strains, NIV isolates have a higher H2O2-destroying capacity, which partially results from a significant enhancement of catalase activity induced by peroxide stress. A 0.5 mM H2O2 treatment leads to a 1.3- to 1.7-fold increase in the catalase activity of NIV isolates. Our data, which show the higher adaptation to oxidative stress developed by NIV isolates, are consistent with the higher virulence of these Fusarium strains on maize compared with DON isolates.  相似文献   

9.
10.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

11.
The present study investigated the pharmacological properties of excitatory P2X receptors and P2X(2) and P2X(5) receptor subunit expression in rat-cultured thoracolumbar sympathetic neurons. In patch-clamp recordings, ATP (3-1000 microM; applied for 1 s) induced inward currents in a concentration-dependent manner. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 microM) counteracted the ATP response. In contrast to ATP, alpha,beta-meATP (30 microM; for 1 s) was virtually ineffective. Prolonged application of ATP (100 microM; 10 s) induced receptor desensitization in a significant proportion of sympathetic neurons in a manner typical for P2X(2-2) splice variant-mediated responses. Using single-cell RT-PCR, P2X(2), P2X(2-2) and P2X(5) mRNA expression was detectable in individual tyrosine hydroxylase-positive neurons; coexpression of both P2X(2) isoforms was not observed. Laser scanning microscopy revealed both P2X(2) and P2X(5) immunoreactivity in virtually every TH-positive neuron. P2X(2) immunoreactivity was largely distributed over the cell body, whereas P2X(5) immunoreactivity was most distinctly located close to the nucleus. In summary, the present study demonstrates the expression of P2X(2), P2X(2-2) and P2X(5) receptor subunits in rat thoracolumbar neurons. The functional data in conjunction with a preferential membranous localization of P2X(2)/P2X(2-2) compared with P2X(5) suggest that the excitatory P2X responses are mediated by P2X(2) and P2X(2-2) receptors. Apparently there exist two types of P2X(2) receptor-bearing sympathetic neurons: one major population expressing the unspliced isoform and another minor population expressing the P2X(2-2) splice variant.  相似文献   

12.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

13.
Mg2+- or Ca2+-Activated ATPase in Squid Giant Fiber Axoplasm   总被引:1,自引:0,他引:1  
A divalent cation-activated ATPase in axoplasm from the squid giant axon is described. The enzyme requires Mg2+ or Ca2+, has a K+ optimum of 60 mM, and has a pH optimum of 7.5. Several nucleotide triphosphates other than ATP can serve as substrates. The enzyme is inhibited by excess ATP or Mg2+. The enzyme is enriched in a rapidly sedimenting fraction of the axoplasm, and is eluted in the exclusion volume of a Sepharose 4B column, suggesting that it is associated with a highly aggregated structure. Comparison of the properties of enzyme with those of myosin and Na+-K+-ATPase suggests that differs from both of these enzymes. The enzyme has many similarities to vertebrate nerve ATPases previously described. The demonstration of the presence of this ATPase in squid axoplasm proves the neuronal localization of the enzyme.  相似文献   

14.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

15.
Mg2+- and Ca2+-uptake was measured in dark-grown oat seedlings ( Avena sativa L. cv. Brighton) cultivated at two levels of mineral nutrition. In addition the stimulation of the ATPase activity of the microsomal fraction of the roots by Mg2+ was measured. Ca2+-uptake by the roots was mainly passive. Mg2+-uptake mainly active; the passive component of Mg2+-uptake was accompanied by Ca2+-efflux up to 60% of the Ca2+ present in the roots.
In general Mg2+ -uptake of oat roots was biphasic. The affinity of the second phase correspond well with that of the Mg2+-stimulation of the ATPase activity, in low-salt roots as well as in high-salt roots and in roots of plants switched to the other nutritional condition. Linear relationships were observed when [phase 2] Mg2+-uptake was plotted against Mg2+-stimulation of the ATPase activity of the microsomal fraction of the roots. In 5 days old high-salt plants 1 ATP (hydrolysed in the presence of Mg2+ J corresponded with active uptake of a single Mg2+ ion, but in older high-salt roots and in low-salt roots more ATP was hydrolysed per net uptake of a Mg2+ ion. The results are discussed against the background of regulation of the Mg2+-level of the cytoplasm of root cells by transport of Mg2+ by a Mg2+-ATPase to the vacuole, to the xylem vessels, and possibly outwards.  相似文献   

16.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   

17.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

18.
Newly formed prostaglandins (PGs), which are assumed to act as modulators of afferent sensory messages, were studied in chick dorsal root ganglia (DRG) during development. [1-14C]Arachidonic acid was converted by DRG homogenates from 1-week-old chickens into two major 14C-PGs: PGE2 and PGD2. The enzymatic conversion of arachidonic acid was characterized as follows: (a) Boiled preparations were inactivated; (b) synthesis of PGs was inhibited by pretreatment with aspirin or indomethacin and enhanced by esculetin, a protector of cyclooxygenase; and (c) [14C]PGE2 and [14C]PGD2 accumulation was a protein dose-dependent process. Further fractionation of crude homogenates indicated that PG endoperoxide synthetase (EC 1.14.99.1) and PGE2 synthetase (EC 5.3.99.3) were membrane-bound enzymes, whereas PGD2 synthetase (EC 5.3.99.2) was recovered in the cytosol. During development, from embryonic day 10 to day 14 after hatching, PGD2 synthetase activity remained constant; in contrast, a sharp rise in [14C]PGE2 synthesis was observed from embryonic day 14 to 18. The time curves of PGD2 and PGE2 synthetase specific activity may be related to changes taking place in the cell population of developing DRG. It is therefore suggested that arachidonic acid would be enzymatically converted early into PGD2 by maturing ganglion cells and then later into PGE2 by proliferating fibroblasts.  相似文献   

19.
Bovine P2 Protein: Sequence at the NH2-Terminal of the Protein   总被引:2,自引:2,他引:0  
Sequence data from key fragments of the P2 protein established the order of cyanogen bromide (CNBr) peptides in the structure of the protein and the primary structure for approximately one-half of the molecule. Data were obtained from the three tryptic peptides of blocked NH2-terminal CNBr peptide (CN3), the large CNBr peptide of P2 protein (CN1), and a fragment obtained from P2 by cleavage at tryptophan with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine. This last fragment was found to contain an over-lapping sequence that proved the juxtaposition of CN1 and CN3 in P2 protein. Thus, based on this fact and the characteristics of the CNBr peptides, the P2 structure is composed of CNBr peptides in the order: CN3-CN1-CN2(Val)-CN2(Lys). A comparison was made between the partial sequence of P2 protein and the equivalent portion of the structure of bovine myelin basic protein. The structures of these two proteins were found to be distinctly different although certain similarities are found.  相似文献   

20.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号