首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Recently, we reported substrate-based beta-secretase (BACE1) inhibitors with a hydroxymethylcarbonyl (HMC) isostere as a substrate transition-state mimic. These inhibitors showed potent BACE1 inhibitory activities (approximately 1.2 nM IC(50)). In order to improve in vivo enzymatic stability and permeability across the blood-brain barrier, these penta-peptidic inhibitors would need to be further optimized. On the other hand, non-peptidic inhibitors possessing isophthalic residue at the P(2) position were reported from other research groups. We selected isophthalic-type aromatic residues at the P(2) position and an HMC isostere at the P(1) position as lead compounds. On the basis of the design approach focused on the conformer of docked inhibitor in BACE1, we found novel non-peptidic and small-sized BACE1 inhibitors possessing a 2,6-pyridinedicarboxylic, chelidamic or chelidonic residue at the P(2) position.  相似文献   

2.
A biaryl pyridylfuran P(3) substituent on the hydroxyethylene isostere scaffold affords HIV protease inhibitors (PI's) with picomolar (IC(50)) potency against the protease enzymes from PI-resistant HIV-1 strains. Inclusion of a gem-dimethyl substituent afforded compound 3 with 100% oral bioavailability (dogs) and more than double the t(1/2) of indinavir. Inhibition of multiple P450 isoforms is dependent on the regiochemistry of the pyridyl nitrogen in these compounds.  相似文献   

3.
Previously reported pentapeptidic BACE1 inhibitors, designed using a substrate-based approach, were used as lead compounds for the further design of non-peptidic BACE1 inhibitors. Although these peptidic and non-peptidic inhibitors, with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic, exhibited potent BACE1 inhibitory activities, their molecular-sizes appeared a little too big (molecular weight of >600daltons) for developing practical anti-Alzheimer's disease drugs. To develop lower weight BACE1 inhibitors, a series of tripeptidic BACE1 inhibitors were devised using a design approach based on the conformation of a virtual inhibitor bound to the BACE1 active site, also called 'in-silico conformational structure-based design'. Although these tripeptidic BACE1 inhibitors contained some natural amino acid residues, they are expected to be useful as lead compounds for developing the next generation BACE1 inhibitors, due to their low molecular size and unique structural features compared with previously reported inhibitors.  相似文献   

4.
A novel class of substrate-based β-secretase (BACE1) inhibitors containing a hydroxymethylcarbonyl (HMC) isostere was designed and synthesized. Phenylnorstatine [(2R,3S)-3-amino-2-hydroxy-4-phenylbutyric acid; Pns] was an effective transition-state mimic at the P1 position. Structure–activity relationships (SARs) of the P3–P3′ positions of BACE1 inhibitors were studied.  相似文献   

5.
Aspartic proteases have emerged as targets for substrate-based inhibitor design due to their vital roles in the life cycles of the organisms that cause AIDS, malaria, leukemia, and other infectious diseases. Based on the concept of mimicking the substrate transition-state, we designed and synthesized a novel class of aspartic protease inhibitors containing the hydroxymethylcarbonyl (HMC) isostere. An unnatural amino acid, allophenylnorstatine [Apns; (2 S ,3 S )-3-amino-2-hydroxy-4-phenylbutyric acid], was incorporated at the P1 site in a series of peptidomimetic compounds that mimic the natural substrates of the HIV, HTLV-I, and malarial aspartic proteases. From extensive structure-activity relationship studies, we were able to identify a series of highly potent peptidomimetic inhibitors of HIV protease. One highly potent inhibitor of the malarial aspartic protease (plasmepsin II) was identified. Finally, a promising lead compound against the HTLV-I protease was identified.  相似文献   

6.
Towards the development of chemotherapy for the infection by human T-cell leukemia virus type I (HTLV-I), we have established evaluation systems for HTLV-I protease (PR) inhibitors using both recombinant and chemically synthesized HTLV-I PRs. Newly synthesized substrate-based inhibitors containing hydroxymethylcarbonyl (HMC) isostere showed potent anti-HTLV-I PR activity.  相似文献   

7.
Recently, we reported substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays. We also designed and synthesized non-peptidic and small-sized inhibitors possessing a heterocyclic scaffold at the P(2) position. By studying the structure-activity relationship of these inhibitors, we found that the σ-π interaction of an inhibitor with the BACE1-Arg235 side chain played a key role in the inhibition mechanism. Hence, we optimized the inhibitors with a focus on their P(2) regions. In this Letter, a series of novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P(2) position are described along with the results of the related structure-activity relationship study. These small-sized inhibitors are expected improved membrane permeability and bioavailability.  相似文献   

8.
We have extended a highly flexible method for rapidly assembling aspartic protease inhibitors to produce symmetric and asymmetric monohydroxyethylene peptidomimetics. This method is based on the prior synthesis of the central non-cleavable peptide-bond isostere [NH(2)-P(1)psiP1'-NH(2); psi=hydroxyethylene isostere, HNCH(Bz)CHOHCH(2)CH(Bz)NH], with the possibility of accurately controlling its stereochemistry (S,S,S or S,R,S), and subsequently adding appropriate flanking units, chosen from commercially available amino acids, aromatic carboxylic acids, or phenoxyacetic acid (Poa) derivatives. The method was used to make asymmetric inhibitors of general formula Kyn-Xaa-PhepsiPhe-dmPoa, (Kyn=kynurenic acid, Xaa=Val, Thr or D-thienylglycine, M(r)=716-754) and symmetric inhibitors of formula xPoa-PhepsiPhe-xPoa (xPoa=Poa or dimethyl-, hydroxy-, formyl- or acetyl-Poa, M(r)=553-609), with logP(o/w) values ranging from 4.1 to 7.6. Inhibition of HIV-PR did not depend on the stereochemistry of the hydroxyl group, while it depended markedly on the substituents present on the Poa residues, with dmPoa being preferred over Poa or its more hydrophilic derivatives. Conversely, inhibition of Candida albicans Sap2 was higher for the S,S,S epimers, and Poa or its hydrophilic derivatives were preferred over dmPoa.  相似文献   

9.
The crystal structure of a complex between chemically synthesized human immunodeficiency virus type 1 (HIV-1) protease and an octapeptide inhibitor has been refined to an R factor of 0.138 at 2.5-A resolution. The substrate-based inhibitor, H-Val-Ser-Gln-Asn-Leu psi [CH(OH)CH2]Val-Ile-Val-OH (U-85548e) contains a hydroxyethylene isostere replacement at the scissile bond that is believed to mimic the tetrahedral transition state of the proteolytic reaction. This potent inhibitor has Ki less than 1 nM and was developed as an active-site titrant of the HIV-1 protease. The inhibitor binds in an extended conformation and is involved in beta-sheet interactions with the active-site floor and flaps of the enzyme, which form the substrate/inhibitor cavity. The inhibitor diastereomer has the S configuration at the chiral carbon atom of the hydroxyethylene insert, and the hydroxyl group is within H-bonding distance of the two active-site carboxyl groups in the enzyme dimer. The two subunits of the enzyme are related by a pseudodyad, which superposes them at a 178 degrees rotation. The main difference between the subunits is in the beta turns of the flaps, which have different conformations in the two monomers. The inhibitor has a clear preferred orientation in the active site and the alternative conformation, if any, is a minor one (occupancy of less than 30%). A new model of the enzymatic mechanism is proposed in which the proteolytic reaction is viewed as a one-step process during which the nucleophile (water molecule) and electrophile (an acidic proton) attack the scissile bond in a concerted manner.  相似文献   

10.
The crystal structure of the complex between human immunodeficiency virus type 1 (HIV-1) protease and a peptidomimetic inhibitor of ethyleneamine type has been refined to R factor of 0.178 with diffraction limit 2.5 A. The peptidomimetic inhibitor Boc-Phe-Psi[CH2CH2NH]-Phe-Glu-Phe-NH2 (denoted here as OE) contains the ethyleneamine replacement of the scissile peptide bond. The inhibitor lacks the hydroxyl group which is believed to mimic tetrahedral transition state of proteolytic reaction and thus is suspected to be necessary for good properties of peptidomimetic HIV-1 protease inhibitors. Despite the missing hydroxyl group the inhibition constant of OE is 1.53 nm and it remains in the nanomolar range also towards several available mutants of HIV-1 protease. The inhibitor was found in the active site of protease in an extended conformation with a unique hydrogen bond pattern different from hydroxyethylene and hydroxyethylamine inhibitors. The isostere nitrogen forms a hydrogen bond to one catalytic aspartate only. The other aspartate forms two weak hydrogen bridges to the ethylene group of the isostere. A comparison with other inhibitors of this series containing isostere hydroxyl group in R or S configuration shows different ways of accommodation of inhibitor in the active site. Special attention is devoted to intermolecular contacts between neighbouring dimers responsible for mutual protein adhesion and for a special conformation of Met46 and Phe53 side chains not expected for free protein in water solution.  相似文献   

11.
We have previously reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. While these inhibitors exhibited potent activities in enzymatic and cellular assays (KMI-429 in particular inhibited Aβ production in vivo), these inhibitors contained some natural amino acids that seemed to be required to improve enzymatic stability in vivo and permeability across the blood–brain barrier, so as to be practical drug. Recently, we synthesized non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold at the P2 position. Herein we report the SAR study of BACE1 inhibitors possessing this heterocyclic scaffold, a chelidonic or 2,6-pyridinedicarboxylic moiety.  相似文献   

12.
Plasmepsin (Plm) has been identified as an important target for the development of new antimalarial drugs, since its inhibition leads to the starvation of Plasmodium falciparum. A series of substrate-based dipeptide-type Plm II inhibitors containing the hydroxymethylcarbonyl isostere as a transition-state mimic were synthesized. The general design principle was provision of a conformationally restrained hydroxyl group (corresponding to the set residue at the P2' position in native substrates) and a bulky unit to fit the S2' pocket.  相似文献   

13.
Recently, we reported potent BACE1 inhibitors KMI-429, -684, and -574 possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays, especially, KMI-429 was confirmed to significantly inhibit Abeta production in vivo. However, acidic moieties at the P(4) and P(1)' positions of KMI-compounds were thought to be unfavorable for membrane permeability across the blood-brain barrier. Herein, we replaced acidic moieties at the P(4) position with other hydrogen bond acceptor groups, and these inhibitors exhibited improved BACE1 inhibitory activities in cultured cells. In this study, we replaced the acidic moieties at the P(1)' position with non-acidic and low molecular sized moieties.  相似文献   

14.
Hong L  Turner RT  Koelsch G  Shin D  Ghosh AK  Tang J 《Biochemistry》2002,41(36):10963-10967
The structure of the catalytic domain of human memapsin 2 bound to an inhibitor OM00-3 (Glu-Leu-Asp-LeuAla-Val-Glu-Phe, K(i) = 0.3 nM, the asterisk denotes the hydroxyethylene transition-state isostere) has been determined at 2.1 A resolution. Uniquely defined in the structure are the locations of S(3)' and S(4)' subsites, which were not identified in the previous structure of memapsin 2 in complex with the inhibitor OM99-2 (Glu-Val-Asn-LeuAla-Ala-Glu-Phe, K(i) = 1 nM). Different binding modes for the P(2) and P(4) side chains are also observed. These new structural elements are useful for the design of new inhibitors. The structural and kinetic data indicate that the replacement of the P(2)' alanine in OM99-2 with a valine in OM00-3 stabilizes the binding of P(3)' and P(4)'.  相似文献   

15.
Analogues of peptides ranging in size from three to six amino acids and containing the hydroxyethylene dipeptide isosteres Phe psi Gly, Phe psi Ala, Phe psi NorVal, Phe psi Leu, and Phe psi Phe, where psi denotes replacement of CONH by (S)-CH(OH)CH2, were synthesized and studied as HIV-1 protease inhibitors. Inhibition constants (Ki) with purified HIV-1 protease depend strongly on the isostere in the order Phe psi Gly greater than Phe psi Ala greater than Phe psi NorVal greater than Phe psi Leu greater than Phe psi Phe and decrease with increasing length of the peptide analogue, converging to a value of 0.4 nM. Ki values are progressively less dependent on inhibitor length as the size of the P1' side chain within the isostere increases. The structures of HIV-1 protease complexed with the inhibitors Ala-Ala-X-Val-Val-OMe, where X is Phe psi Gly, Phe psi Ala, Phe psi NorVal, and Phe psi Phe, have been determined by X-ray crystallography (resolution 2.3-3.2 A). The crystals exhibit symmetry consistent with space group P6(1) with strong noncrystallographic 2-fold symmetry, and the inhibitors all exhibit 2-fold disorder. The inhibitors bind in similar conformations, forming conserved hydrogen bonds with the enzyme. The Phe psi Gly inhibitor adopts an altered conformation that places its P3' valine side chain partially in the hydrophobic S1' pocket, thus suggesting an explanation for the greater dependence of the Ki value on inhibitor length in the Phe psi Gly series. From the kinetic and crystallographic data, a minimal inhibitor model for tight-binding inhibition is derived in which the enzyme subsites S2-S2' are optimally occupied. The Ki values for several compounds are compared with their potencies as inhibitors of proteolytic processing in T-cell cultures chronically infected with HIV-1 (MIC values) and as inhibitors of acute infectivity (IC50 values). There is a rank-order correspondence, but a 20-1000-fold difference, between the values of Ki and those of MIC or IC50. IC50 values can approach those of Ki but are highly dependent on the conditions of the acute infectivity assay and are influenced by physiochemical properties of the inhibitors such as solubility.  相似文献   

16.
A series of low-molecular weight 2,6-diamino-isonicotinamide BACE-1 inhibitors containing an amine transition-state isostere were synthesized and shown to be highly potent in both enzymatic and cell-based assays. These inhibitors contain a trans-S,S-methyl cyclopropane P(3) which bind BACE-1 in a 10s-loop down conformation giving rise to highly potent compounds with favorable molecular weight and moderate to high susceptibility to P-glycoprotein (P-gp) efflux.  相似文献   

17.
The synthesis of novel macrocyclic peptidomimetic inhibitors of the enzyme BACE1 is described. These macrocycles are derived from a hydroxyethylene core structure. Compound 7 was co-crystallized with BACE1 and the X-ray structure of the complex elucidated at 1.6 Angstrom resolution. This molecule inhibits the production of the Abeta peptide in HEK293 cells overexpressing APP751sw.  相似文献   

18.
Mason-Pfizer monkey virus (M-PMV) is the prototype type D retrovirus which preassembles immature intracytoplasmic type A particles within the infected cell cytoplasm. Intracytoplasmic type A particles are composed of uncleaved polyprotein precursors which upon release are cleaved by the viral proteinase to their constituent mature proteins. This results in a morphological change in the virion described as maturation. We have investigated the role of the viral proteinase in virus maturation and infectivity by inhibiting the function of the enzyme through mutagenesis of the proteinase gene and by using peptide inhibitors originally designed to block human immunodeficiency virus type 1 proteinase activity. Mutation of the active-site aspartic acid, Asp-26, to asparagine abrogated the activity of the M-PMV proteinase but did not affect the assembly of noninfectious, immature virus particles. In mutant virions, the transmembrane glycoprotein (TM) of M-PMV, initially synthesized as a cell-associated gp22, is not cleaved to gp20, as is observed with wild-type virions. This demonstrates that the viral proteinase is responsible for this cleavage event. Hydroxyethylene isostere human immunodeficiency virus type 1 proteinase inhibitors were shown to block M-PMV proteinase cleavage of the TM glycoprotein and Gag-containing precursors in a dose-dependent manner. The TM cleavage event was more sensitive than cleavage of the Gag precursors to inhibition. The infectivity of treated particles was reduced significantly, but experiments showed that inhibition of precursor and TM cleavage may be at least partially reversible. These results demonstrate that the M-PMV aspartyl proteinase is activated in released virions and that the hydroxyethylene isostere proteinase inhibitors used in this study exhibit a broad spectrum of antiretroviral activity.  相似文献   

19.
Progressive cerebral amyloid beta-protein (A beta) deposition is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). Elevated levels of A beta(42) peptide formation have been linked to early-onset familial AD-causing gene mutations in the amyloid beta-protein precursor (A beta PP) and the presenilins. Sequential cleavage of A beta PP by the beta- and gamma-secretases generates the N- and C-termini of the A beta peptide, making both the beta- and gamma-secretase enzymes potential therapeutic targets for AD. The identity of the A beta PP gamma-secretase and the mechanism by which the C-termini of A beta are formed remain uncertain, although it has been suggested that the presenilins themselves are novel intramembrane-cleaving gamma-secretases of the aspartyl protease class [Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., and Selkoe, D. J. (1999) Nature 398, 513-517]. In this study we report the identification of L-685,458 as a structurally novel inhibitor of A beta PP gamma-secretase activity, with a similar potency for inhibition of A beta(42) and A beta(40) peptides. This compound contains an hydroxyethylene dipeptide isostere which suggests that it could function as a transition state analogue mimic of an aspartyl protease. The preferred stereochemistry of the hydroxyethylene dipeptide isostere was found to be the opposite to that required for inhibition of the HIV-1 aspartyl protease, a factor which may contribute to the observed specificity of this compound. Specific and potent inhibitors of A beta PP gamma-secretase activity such as L-685,458 will enable important advances toward the identification and elucidation of the mechanism of action of this enigmatic protease.  相似文献   

20.
Recently, we reported a novel substrate-based octapeptide BACE1 inhibitor KMI-008 containing hydroxymethylcarbonyl (HMC) isostere as a transition-state mimic. Using KMI-008 as a lead compound, a small-sized and highly potent BACE1 inhibitor KMI-370 (IC(50)=3.4 nM) was designed and synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号