首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of the type-3 copper enzyme tyrosinase by halide ions was studied by kinetic and paramagnetic (1)H NMR methods. All halides are inhibitors in the conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) with apparent inhibition constants that follow the order I(-) < F(-) < Cl(-) < Br(-) at pH 6.80. The results show that the inhibition arises from the interaction of halide with both the oxidized (affinity F(-) > Cl(-) > Br(-) > I(-)) and reduced (affinity I(-) > Br(-) > Cl(-) > F(-)) enzyme. The paramagnetic (1)H NMR of the oxidized enzyme complexed with the halides is consistent with a direct interaction of halide with the type-3 site and shows that the (Cu-His(3))(2) coordination occurs in all halide-bound species. It is surmised that halides bridge both of the copper ions in the active site. Fluoride and chloride are shown to bind only to the low pH form of oxidized tyrosinase, explaining the strong pH dependence of the inhibition by these ions. We further show that p-toluic acid and the bidentate transition state analogue, Kojic acid, displace chloride from the oxidized active site, whereas the monodentate substrate analogue, p-nitrophenol, forms a ternary complex with the enzyme and the chloride ion. On the basis of the experimental results, a model is formulated for the inhibitor action and for the reaction of diphenols with the oxidized enzyme.  相似文献   

2.
The activity of tyrosinase, the rate-limiting enzyme for melanin synthesis, is higher in Black skin melanocytes than in melanocytes derived from Caucasian skin. This variation in enzyme activity is not due to differences in tyrosinase abundance or tyrosinase gene activity, but, rather, is due to differences in the catalytic activity of preexisting tyrosinase. In melanocytes, tyrosinase is localized to the membrane of melanosomes and in Caucasian melanocytes the melanosome-bound enzyme is largely inactive. Conversely, in melanosomes of Black melanocytes, tyrosinase has high catalytic activity. Treatment of Caucasian melanocytes with the lysosomotropic compound ammonium chloride or with the ionophores nigericin and monensin results in a rapid and pronounced increase in tyrosinase activity. This increase occurs without any change in tyrosinase abundance, indicating that these compounds are increasing the catalytic activity of preexisting enzyme. Inhibition of the vacuolar proton pump V-ATPase by treatment of Caucasian melanocytes with bafilomycin also increases tyrosinase activity. In contrast to the 10-fold increase in tyrosinase observed in Caucasian melanocytes, neither ammonium chloride, monensin, nigericin, nor bafilomycin is able to increase the already high level of tyrosinase activity present in melanosomes of melanocytes derived from Black skin. Finally, staining of Caucasian melanocytes with the fluorescent weak base acridine orange shows that melanosomes of Caucasian, but not Black, melanocytes are acidic organelles. These data support a model for racial pigmentation that is based on differences in melanosome pH in Black and Caucasian skin types. The models suggests that melanosomes of Caucasian melanocytes are acidic, while those of Black individuals are more neutral. Since tyrosinase is inactive in an acid environment, the enzyme is largely inactive in Caucasian melanosomes but fully active in Black melanosomes.  相似文献   

3.
The tyrosinase (EC 1.14.18.1) activity of cell-free extracts (TyH) of B16 melanoma cells cultured in the presence of 5 to 10 mM ammonium chloride was considerably higher than that of cells from control cultures. This increase in TyH in the presence of ammonium chloride seemed to be due to de novo synthesis of the enzyme, because it was inhibited by 1 microgram/ml of cycloheximide. In the presence of the latter, however, ammonium chloride did increase the tyrosinase activity of living cells in culture (TyC) resulting in about threefold increase in the TyC/TyH ratio, a measure of the extent of tyrosinase reaction exerted by the enzyme present in living cells. This higher TyC/TyH ratio induced by ammonium chloride was also observed in the absence of cycloheximide. Similar increases in TyH, TyC, and TyC/TyH occurred in the presence of methylamine or ethylamine instead of ammonium chloride, but not in the presence of tetraethylammonium chloride, and also in culture medium of higher pH. The apparently similar effects of lysosomotropic bases and medium of higher pH on the TyC/TyH ratio suggest that there are some mechanisms that control the intramelanosomal pH lower than the cytoplasmic pH.  相似文献   

4.
Human tyrosinase (5.5 mg) has been purified from a single human melanotic melanoma metastasis (50.5 g). In the presence of dioxygen, L-tyrosine proved to be a very poor substrate for this enzyme with barely detectable activity compared to L-dopa. However, saturating superoxide anion (i.e., greater than 5 x 10(-3) M) enhanced the oxidation rate of L-tyrosine to dopachrome 40-fold. Hydrogen peroxide was shown to be a competitive inhibitor of tyrosinase when L-tyrosine was the substrate. This reversible inhibition is based on a slow pseudocatalase activity for tyrosinase. Monothiols and dithiols inhibit tyrosinase by different mechanisms. Reduced human thioredoxin and 2,3-dithiopropanol are allosteric inhibitors of tyrosinase yielding bis-cysteinate complexes with one of the copper atoms in the enzyme active site. Bis-cysteinate tyrosinase activity is down-regulated to 30% of native enzyme activity in the L-dopa assay; suggesting a true regulatory role for dithiols. Monothiols such as reduced glutathione and beta-mercaptoethanol are much less reactive with tyrosinase although 10(-3) M monothiol totally inhibits enzyme activity. Reduced thioredoxin inhibits tyrosinase 23-fold more than reduced glutathione under the same experimental conditions.  相似文献   

5.
Sensitive assay methods for tyrosinase are essential not only for the understanding the process of pigment production but also for the development of effective inhibitors of tyrosinase. To develop an efficient assay method, we applied thymol blue to reaction mixtures. The enzyme kinetic study revealed that DOPA oxidase activity of tyrosinase in thymol blue-applied reaction system was more sensitively measured, even under lower enzyme units compared with the previous report with significant enhancement of Vmax while affinity change on substrate was not observed. To test whether this method could be applicable to the inhibition and the inactivation kinetic study of tyrosinase, the effect of kojic acid, a well-known tyrosinase inhibitor, and sodium chloride respectively, have been studied. Conclusively, thymol blue method can assay tyrosinase activity with sensitivity and is applicable to the inhibition and the inactivation study of tyrosinase.  相似文献   

6.
When cells of Valonia macrophysa were placed in hypertonic sea water, the concentration of halide and of nitrate increased, and the sum of halide + nitrate became 0.05 M greater inside than outside, which is about the same difference as is found in cells in normal sea water. In ordinary sea water the ratio of halide to nitrate is 80,000 to 1. When this was changed by substituting nitrate for halide so that the concentration of halide was 1.75 times that of nitrate the rate of entrance of halide was 1.68 times that of nitrate in 276 hours and the ratio of halide to nitrate in the sap decreased from 38 to 18.5. No halide came out in exchange for entering nitrate. The retention of chloride may well be due to the fact that even when the halide concentration of the sea water is reduced as low as 0.4 M, there is still an inwardly directed activity gradient of sodium chloride.  相似文献   

7.
1. Frog epidermis tyrosinase was coupled to Sepharose activated with low concentrations of CNBr. The tetrameric form of the enzyme was linked to the matrix via its subunits. Dissociation of the bound active enzyme with guanidinium chloride yielded an active immobilized dimeric derivative. 2. Immobilized dimeric derivative was able to interact with soluble subunits formed transiently during renaturation. An 85% recovery of the native dopa oxidase specific activity was achieved after hybridization. 3. Fluorescence spectra of different immobilized derivatives suggested that tryptophan residues were involved in the interactions between tyrosinase subunits. 4. It is suggested that the activation of the subunits of tyrosinase involves a conformational change towards a more unfolded state, which favours a reassociation to the dimeric active state.  相似文献   

8.
Haloalkane dehalogenases: steady-state kinetics and halide inhibition   总被引:2,自引:0,他引:2  
The substrate specificities and product inhibition patterns of haloalkane dehalogenases from Xanthobacter autotrophicus GJ10 (XaDHL) and Rhodococcus rhodochrous (RrDHL) have been compared using a pH-indicator dye assay. In contrast to XaDHL, RrDHL is efficient toward secondary alkyl halides. Using steady-state kinetics, we have shown that halides are uncompetitive inhibitors of XaDHL with 1, 2-dichloroethane as the varied substrate at pH 8.2 (Cl-, Kii = 19 +/- 0.91; Br-, Kii = 2.5 +/- 0.19 mM; I-, Kii = 4.1 +/- 0.43 mM). Because they are uncompetitive with the substrate, halide ions do not bind to the free form of the enzyme; therefore, halide ions cannot be the last product released from the enzyme. The Kii for chloride was pH dependent and decreased more than 20-fold from 61 mM at pH 8.9 to 2.9 mM at pH 6.5. The pH dependence of 1/Kii showed simple titration behavior that fit to a pKa of approximately 7.5. The kcat was maximal at pH 8.2 and decreased at lower pH. A titration of kcat versus pH also fits to a pKa of approximately 7.5. Taken together, these data suggest that chloride binding and kcat are affected by the same ionizable group, likely the imidazole of a histidyl residue. In contrast, halides do not inhibit RrDHL. The Rhodococcus enzyme does not contain a tryptophan corresponding to W175 of XaDHL, which has been implicated in halide ion binding. The site-directed mutants W175F and W175Y of XaDHL were prepared and tested for halide ion inhibition. Halides do not inhibit either W175F or W175Y XaDHL.  相似文献   

9.
Halide permeability sequences were obtained from reversal potential measurements of single-channel currents through 10 pS and 20 pS anion channels in human airway epithelial cells. The sequences obtained were Cl- greater than I- greater than Br- greater than or equal to F- for the 10 pS channel and Cl- greater than I- greater than or equal to Br- greater than or equal to F- for the 20 pS channel. However, the permeability differences were not large, the greatest being 0.66 for the ratio of fluoride to chloride permeability in the 20 pS channel. Single-channel currents were also measured with solutions of constant halide concentration but varying ratios of chloride to fluoride ions. An anomalous mole fraction effect was observed for the 20 pS channel but not for the 10 pS channel, suggesting that the former is a multi-ion channel. Comparison of the halide permeability sequences of these two channels with those of whole-cell currents in other epithelial cells does not support their involvement in any of the known whole-cell epithelial currents.  相似文献   

10.
The inhibition of tyrosinases from frog epidermis (Rana esculenta ridibunda), mushroom (Agaricus bisporus) and Harding-Passey mouse melanoma by halides is compared. In all cases, the inhibition is pH dependent, increasing when the pH decreases. The order of inhibition is I- greater than Br- greater than Cl- much greater than F- for frog epidermis tyrosinase, F- greater than I- greater than Cl- greater than Br- for mushroom tyrosinase and F- greater than Cl- much greater than Br- greater than I- for the mouse melanoma enzyme. These results are discussed in terms of the active site accessibility to exogenous ligands. The activation energies of the enzyme-catalysed L-dopa oxidation were also calculated, being the values 6.86, 17.01 and 20.25 kcal/mol for frog epidermis, mushroom and Harding-Passey mouse melanoma, respectively. A relationship between these values and the evolutionary adaptation of these enzymes is proposed.  相似文献   

11.
The kinetics of chloride and bromide transport were examined in intact human red blood cells and resealed ghosts. Because the influx and efflux of halide ions are almost equal (less than 0.01% difference), the stimulation of the exchange flux by external halides could be determined by measuring 36Cl or 82Br efflux. When the external halide concentration was increased by replacement of isoionic, isotonic solutions of sucrose and the nontransported anion citrate, the stimulation of the exchange flux was hyperbolic and was maximum at 20 mM halide externally. The K 1/2-out, the external concentration of chloride or bromide which stimulated the efflux to half of its maximum value, was 3 and 1 mM respectively, 15-fold smaller than K 1/2-in which we found to be about equal to the K 1/2 of halide self-exchange with nearly equal internal and external concentrations. Thus, the transport mechanism behaves asymmetrically with respect to these transported halides. Bromide flux was two-fold greater in bromide-chloride heteroexchange than in bromide-bromide self-exchange but it was still much smaller than the chloride self-exchange flux. The maximum influx and efflux of bromide in exchange for chloride were roughly eqal. Thus, since the maximum transport rates in the two directions are nearly equal, the kinetics of bromide equilibrium exchange with equal concentrations on the two sides are controlled on the inside where K 1/2 is greatest. The K 1/2-out Cl was a hyperbolic function of internal chloride concentration and was proportional to the maximum flux at each internal chloride concentration. These results are evaluated in terms of two broad categories of models. We conclude that, in contrast to other ion transport systems which have been shown to have kinetics of a sequential mechanism, anion exchange is compatible with a ping-pong mechanism in which a single site reciprocates between inside- and outside-facing orientations with asymmetric K 1/2 values.  相似文献   

12.
Tyrosinase activity and abundance in Cloudman melanoma cells   总被引:4,自引:0,他引:4  
Rabbit anti-tyrosinase antibodies were used to study the abundance, processing, and degradation of tyrosinase in murine (Cloudman) melanoma cells. The polyclonal antibodies precipitated low-molecular-weight (68,000 and 70,000) and high-molecular-weight (78,000 and 80,000) tyrosinases that had a precursor-product relationship. Cells with high basal tyrosinase activity had high levels of newly synthesized tyrosinase. Cells with low tyrosinase activity synthesized less tyrosinase and degraded the enzyme at a faster rate than cells with high tyrosinase activity. Melanotropin (melanocyte stimulating hormone), dibutyryl cyclic adenosine monophosphate, and isobutylmethylxanthine caused an increase in the abundance of newly synthesized tyrosinase that was directly proportional to the increase in enzyme activity. This enzyme was not a phosphoprotein. Other changes in the culture conditions that increased the level of tyrosinase activity increased the abundance of newly synthesized enzyme. It is thus concluded that the level of tyrosinase activity in Cloudman melanoma cells is a direct reflection of the abundance of enzyme protein.  相似文献   

13.
There are a series of examples in which phenols appear as contaminants in process streams and their selective removal is required for waste minimization. For the selective removal of a phenol from a mixture, we are exploiting the substrate specificity of the enzyme tyrosinase to convert phenols into reactive o-quinones which are then adsorbed onto the amine-containing polymer chitosan. To effectively package the enzyme and sorbent, tyrosinase was immobilized between two chitosan gel films. The entrapment of tyrosinase between the films led to little loss of activity during immobilization, while tyrosinase leakage during incubation was limited. The chitosan gels rapidly adsorb the tyrosinase-generated product(s) of phenol oxidation while the capacity of the gels is substantially greater than the capacity of chitosan flakes. The performance of tyrosinase-containing chitosan gels significantly depends on the ratio of tyrosinase-to-chitosan. High tyrosinase-to-chitosan ratios result in less efficient use of tyrosinase, presumably due to suicide inactivation. However, the efficiency of chitosan use increases with increased tyrosinase-to-chitosan ratios. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
EPR spectra of the low-spin cyanide complex of myeloperoxidase have been measured in the absence and presence of halide substrates; chloride, bromide and iodide. Halide-dependent spectral changes are found at acidic pH. The electronic structure of the low-spin ferric iron in cyanide complex appears to be modulated by halide binding to a protonated amino acid in the distal heme cavity. These findings suggest halide substrates can interact with ferryl oxygen in compound I during enzyme catalysis to form hypohalous acid.  相似文献   

15.
Haloalkane dehalogenase (DhlA) converts haloalkanes to their corresponding alcohols and halide ions. The rate-limiting step in the reaction of DhlA is the release of the halide ion. The kinetics of halide release have been analyzed by measuring halide binding with stopped-flow fluorescence experiments. At high halide concentrations, halide import occurs predominantly via the rapid formation of a weak initial collision complex, followed by transport of the ion to the active site. To obtain more insight in this collision complex, we determined the X-ray structure of DhlA in the presence of bromide and investigated the kinetics of mutants that were constructed on the basis of this structure. The X-ray structure revealed one bromide ion firmly bound in the active site and two bromide ions weakly bound on the surface of the enzyme. One of the weakly bound ions is close to Thr197 and Phe294, near the entrance of the earlier proposed tunnel for substrate import. Kinetic analysis of bromide import by the Thr197Ala and Phe294Ala mutants of DhlA at high halide concentration showed that the rate constants for halide binding no longer displayed a wild-type-like parabolic increase with increasing bromide concentrations. This is in agreement with an elimination or a decrease in affinity of the surface-located halide-binding site. Likewise, chloride binding kinetics of the mutants indicated significant differences with wild-type enzyme. The results indicate that Thr197 and Phe294 are involved in the formation of an initial collision complex for halide import in DhlA and provide experimental evidence for the role of the tunnel in substrate and product transport.  相似文献   

16.
Angiotensin I-converting enzyme [EC 3.4.15.1] was rapidly and highly purified from a particulate fraction of hog kidney cortex with 13% yield. The procedure, which was rapid, included fractionation on DEAE-cellulose and calcium phosphate gel, chromatographies on DEAE-Sephadex A-50 and hydroxylapatite columns, and gel filtration on a Sephadex G-200 column. The purified enzyme preparation gave two protein bands on standard disc gel electrophoresis, but showed a single protein component on the gel after treatment with neuraminidase [EC 3.2.1.18]. The data strongly suggest that the purified enzyme preparation was a mixture of sialo- and asialo-enzyme. Sialic acid residues apparently do not contribute to the catalytic activity of the enzyme. The enzyme was activated more by chloride ions than by other halide ions tested, using Bz-Gly-Gly-Gly as a substrate. The dissociation constant for chloride ions was determined to be 2.2 mM. Chloride did not protect the enzyme against heat or low pH. The enzyme was resistant to inactivation by trypsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1].  相似文献   

17.
Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma   总被引:2,自引:0,他引:2  
The B16/C3 murine melanoma is a pigmented tumor that is rich in the copper-containing enzyme, tyrosinase. This enzyme, which converts tyrosine to melanin precursors, is largely associated with membrane fractions of cells and exists in a number of discrete isozymic forms ranging in molecular mass from 58,000 to 150,000 daltons and pI from 3.4 to 5.2. One of these isozymes (Mr = 58,000, pI 3.4) has been purified to homogeneity. The purified enzyme catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA) and the conversion of L-DOPA to dopaquinone. Ascorbic acid, tetrahydrofolate, and dopamine can serve as cofactors in the hydroxylase reaction. The Michaelis constants for the purified enzyme were 7 X 10(-4) M for L-tyrosine and 6 X 10(-4) M for L-DOPA. The Vmax for L-DOPA was much greater than the Vmax for L-tyrosine indicating that tyrosine hydroxylation is rate-limiting in melanin precursor biosynthesis. Two putative copper chelators, phenylthiourea and diethyldithiocarbamide inhibited both the tyrosine hydroxylase and L-DOPA oxidase activities of the enzyme. Phenylthiourea was a noncompetitive inhibitor while diethyldithiocarbamide was a competitive inhibitor indicating that these agents act by different mechanisms. When digested with proteases and glycosidases, higher molecular weight forms of tyrosinase co-migrated with the purified enzyme in isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggesting that the isozyme was derived from larger precursors. Thus, post-translational processing of tyrosinase may underlie isozyme diversity and this may be important in the control of melanogenesis in this tumor model.  相似文献   

18.
Regulation of tyrosinase in human melanocytes grown in culture   总被引:12,自引:2,他引:10       下载免费PDF全文
Tyrosinase, the enzyme that controls the synthesis of melanin, is a unique product of melanocytes. Normal and malignant human melanocytes grown in culture were used to study the factors that regulate the expression of tyrosinase. Immunoprecipitation experiments showed that newly synthesized tyrosinase appeared as a protein with an apparent molecular weight of 70,000 that was processed to a protein with an apparent molecular weight of 80,000. Neither tunicamycin nor 2-deoxy-D- glucose inhibited this conversion, suggesting that O-glycosylation is the major biochemical event in the posttranslational modification of tyrosinase. Agents that stimulated the proliferation of normal melanocytes also stimulated tyrosinase activity. Melanocytes with low levels of tyrosinase activity synthesized less tyrosinase, processed the enzyme more slowly, and degraded it more rapidly than melanocytes with high levels of tyrosinase activity. We conclude that tyrosinase activity in cultures of human melanocytes derived from different donors is determined predominantly by its abundance.  相似文献   

19.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. Ionophore at a concentration of 10(-6) g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. Ionophore A23187 also inhibits the PGE1 mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10(-4)M). Ionophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGE1, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. Ionophore causes a rapid and marked (greater than 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

20.
A series of phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) were synthesized in order to study their interaction with mushroom tyrosinase. 1-Amino-2-(3,4-dihydroxyphenyl)ethylphosphonic acid and 1-amino-2-(3,4-dimethoxyphenyl)ethylphosphonic acid turned out to be substrates for mushroom tyrosinase with Km values of 3.3 mM and 9.3 mM respectively. Shortening of the alkyl chain by one methylene group gave amino-(3,4-dihydroxyphenyl)methylphosphonic acid, one of the most powerful known inhibitors of this enzyme. This compound, racemic as well as in its optically active forms, exerts a mixed type of inhibition with an affinity for the enzyme one order of magnitude greater than that of the natural substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号