首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNTHESIS AND STORAGE OF MICROTUBULE PROTEINS BY SEA URCHIN EMBRYOS   总被引:12,自引:7,他引:5       下载免费PDF全文
Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified.  相似文献   

2.
Biogenesis of the mitochondrial ATPase from sea urchin embryos   总被引:1,自引:0,他引:1  
The mitochondrial rutamycin-sensitive ATPase from sea urchin eggs was purified to homogeneity. The subunit structure of the enzyme was characterized by SDS-gel electrophoresis. Eight polypeptides were identified with molecular weights of 55,000, 52,000, 39,000, 31,000, 28,000, 23,000, 17,000 and 10,000. Developing sea urchin embryos were incubated with [2H]leucine in the presence of emetine preferentially to label mitochondrially made proteins. Under these conditions sea urchin mitochondria synthesize eight different polypeptides. Two of these proteins, with molecular weights of 31,000 and 23,000, co-purify with the ATPase. Antibody directed against the pure rutamycin-sensitive ATPase precipitated only these two proteins. Therefore, two of the eight sea urchin ATPase subunits appear to be made by mitochondria.  相似文献   

3.
Newly synthesized proteins from normal and animalized sea urchin embryos were compared by the technique of double labeling. Total embryonic protein was solubilized in SDS, urea, and 2-mercaptoethanol. The proteins were examined by coelectrophoresis on an SDS-polyacrylamide gel. The gels were sliced and the radioactivity determined. A standardized ratio of the isotopes served as the basis of comparison. A comparison of newly synthesized proteins from normal embryos 24 and 48 h old showed a shift from larger to smaller molecular weight proteins. Animalized embryos showed a similar shift. When normal and animalized embryos of the same ages were compared, differences were found. The differences were distributed over the entire range of molecular weights. These results show that although differences in protein synthesis between animalized and normal embryos are evident by 24 h, most of the changes in protein synthesis that occur in normal embryos are unaffected by animalization.  相似文献   

4.
A simple method is described for the isolation of spicules from pluteus embryos of the sea urchin, Strongylocentrotus purpuratus. Radio-iodination of the demineralized matrix reveals six bands on SDS protein gels. Treatment with N-glycanase leads us to believe that some of these proteins are N-linked glycoproteins.  相似文献   

5.
Poly(A)-binding proteins (PABPs) are the best characterized messenger RNA-binding proteins of eucaryotic cells and have been identified in diverse organisms such as mammals and yeasts. The in vitro poly(A)-binding properties of these proteins have been studied intensively; however, little is known about their function in cells. In this report, we show that sea urchin eggs have two molecular weight forms of PABP (molecular weights of 66,000 and 80,000). Each of these has at least five posttranslationally modified forms. Both sea urchin PABPs are found in approximately 1:1 ratios in both cytoplasmic and nuclear fractions of embryonic cells. Quantification in eggs and embryos revealed that sea urchin PABPs are surprisingly abundant, composing about 0.6% of total cellular protein. This is 50 times more than required to bind all the poly(A) in the egg based on the binding stoichiometry of 1 PABP per 27 adenosine residues. We found that density gradient centrifugation strips PABP from poly(A) and therefore underestimates the amount of PABP complexed to poly(A)+ RNA in cell homogenates. However, large-pore gel filtration chromatography could be used to separate intact poly(A)-PABP complexes from free PABP. Using the gel filtration method, we found that the threefold increase in poly(A) content of the egg after fertilization is paralleled by an approximate fivefold increase in the amount of bound PABP. Furthermore, both translated and nontranslated poly(A)+ RNAs appear to be complexed to PABP. As expected from the observation that PABPs are so abundant, greater than 95% of the PABP of the cell is uncomplexed protein.  相似文献   

6.
The biochemical identification of fibronectin in the sea urchin embryo   总被引:3,自引:0,他引:3  
We report the biochemical identification of fibronectin in the basal lamina of the sea urchin embryo. A. punctulata gastrula stage embryos were solubilized in Triton X-100 and the insoluble basal laminae extracted by incubation in buffer containing 8M urea, 2% 2-mercaptoethanol and 2% SDS. Extracted proteins were separated by SDS-PAGE, electrophoretically transferred to nitrocellulose filters and probed with monospecific antibodies directed against human plasma fibronectin (pFN). Incubation in 125I-labelled secondary antibody revealed a single band which co-migrates with human pFN at an apparent molecular weight of 220,000. This is the first direct biochemical demonstration of a fibronectin-like molecule in the sea urchin embryo which cross reacts with antibodies to vertebrate fibronectin.  相似文献   

7.
H W Detrich  L Wilson 《Biochemistry》1983,22(10):2453-2462
Tubulin was purified from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus by chromatography of an egg supernatant fraction on DEAE-Sephacel or DEAE-cellulose followed by cycles of temperature-dependent microtubule assembly and disassembly in vitro. After two assembly cycles, the microtubule protein consisted of the alpha- and beta-tubulins (greater than 98% of the protein) and trace quantities of seven proteins with molecular weights less than 55 000; no associated proteins with molecular weights greater than tubulin were observed. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on urea-polyacrylamide gradient gels, the alpha- and beta-tubulins did not precisely comigrate with their counterparts from bovine brain. Two-dimensional electrophoresis revealed that urchin egg tubulin contained two major alpha-tubulins and a single major beta species. No oligomeric structures were observed in tubulin preparations maintained at 0 degrees C. Purified egg tubulin assembled efficiently into microtubules when warmed to 37 degrees C in a glycerol-free polymerization buffer containing guanosine 5'-triphosphate. The critical concentration for assembly of once- or twice-cycled egg tubulin was 0.12-0.15 mg/mL. Morphologically normal microtubules were observed by electron microscopy, and these microtubules were depolymerized by exposure to low temperature or to podophyllotoxin. Chromatography of a twice-cycled egg tubulin preparation on phosphocellulose did not alter its protein composition and did not affect its subsequent assembly into microtubules. At concentrations above 0.5-0.6 mg/mL, a concentration-dependent "overshoot" in turbidity was observed during the assembly reaction. These results suggest that egg tubulin assembles into microtubules in the absence of the ring-shaped oligomers and microtubule-associated proteins that characterize microtubule protein from vertebrate brain.  相似文献   

8.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

9.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

10.
Messenger RNA has been isolated from the postribosomal supernatant of Spisula solidissima eggs. This mRNA directs the synthesis of several proteins when added to the ascites or wheat germ cell free system. No histone except F1 is coded for by Spisula egg mRNA, in contrast to what has been reported previously for sea urchin egg mRNA. In sea urchin eggs histone mRNA is among the abundant species of maternal mRNA.Histones have been prepared from Spisula embryos at different development stages and histone synthesis followed by incubation with (14C)lysine. The analysis by electrophoresis on acrylamide gels indicates that the pattern of synthesis of histones changes during development and that a new histone F1 fraction is actively synthesized from the 32–64 cells stage. In earlier embryos a different F1 histone is synthesized and the mRNA for this protein may be the only histone mRNA present in eggs.  相似文献   

11.
It has been demonstrated that thiol-disulfide exchange reaction occurs between outer fiberprotein from sperm tail and cortical protein from egg cortex of the sea urchin. This fact indicates homology between microtubule proteins of the outer fiber and mitotic apparatus.  相似文献   

12.
Differences are observed in plasma membrane proteins of S. intermedius and S. droebachiensis sea urchin embryo cells isolated at middle blastula stage by means of acrylamide-gel electrophoresis in presence of SDS, urea or non-ionic detergents--Triton X-100 or Brij 35. Electrophoretic mobilities of plasma membrane proteins of sea urchin hybrid embryo malemale S. intermedius X femalefemale S. droebachiensis were identical with electrophoretic mobilities of plasma membrane proteins of maternal species S. droebachiensis. Three sea urchin embryo species under study had just the same biosynthesis of plasma membrane proteins at middle blastula stage detected by 14C-aminoacids pulse-labeling followed by membrane isolation, electrophoresis and gel-autoradiography.  相似文献   

13.
A special class of polysomes synthesizing tubulin was determined using embryos of the sea urchin, Hemicentrotus pulcherrimus. Three criteria were established for identification of polysomes carrying nascent tubulin, i.e., nascent tubulin on polysomes should have (i) colchicine binding activity, (ii) precipitability with vinblastine and (iii) coincidence in mobility by electrophoresis with tubulin. Two classes of polysomes had polypeptides which accorded with the three criteria. One was tetramers and the other was composed of 15–20 ribosomes. From data reported previously on the molecular weight and amino acid composition of completed microtubule proteins, it was suggested that the class of polysomes composed of 15–20 ribosomes constituted the polysome-synthesizing tubulin of sea urchin embryos. The nature of the nascent polypeptides carried by the tetramer polysomes having colchicine binding activity and precipitability with vinblastine could not be clarified.  相似文献   

14.
Microtubules deployed during early development of the sea urchinembryo are derived both from a preexisting pool of subunitspresent in the egg and from microtubule protein subunits synthesizedin the embryo. Several aspects of microtubule protein synthesisand utilization are reviewed. Microtubule protein synthesisin early development utilizes oogenetic messenger RNA species.Translation of this mRNA is under regulation. Microtubule proteinsynthesis rises concomitantly with overall protein synthesisat fertilization, but rises at a relatively higher rate laterin cleavage stages. Microtubule protein labeled with [3H]-leucinein early development is incorporated into cilia, indicatingthat newly synthesized protein enters the pool of subunits usedin organelle assembly. The microtubule protein pool comprisesabout 1%of the soluble protein of the egg, and remains constantin size at least until the blastula stage. Direct pool sizeestimates are consistent with results of experiments on recruitmentof microtubule protein subunits into the mitotic apparatus andinto regenerating cilia. Soluble and particulate colchicinebinding fractions, which have been reported from several systems,appear to be present in sea urchin embryos. The possible roleof such fractions are discussed, as are aspects of the regulationof ciliary assembly.  相似文献   

15.
Sperm surface proteins persist after fertilization   总被引:2,自引:1,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1343-1353
Certain sperm components labeled with fluorescein isothiocyanate or its radioactive derivative, 125I-diiodofluorescein isothiocyanate (125IFC), are transferred at fertilization to the egg, where they persist throughout early cleavage stages at a localized site in the embryo cytoplasm (Gabel, C. A., E. M. Eddy, and B. M. Shapiro, 1979, Cell, 18:207-215; Gundersen, G. G., C. A. Gabel, and B. M. Shapiro, 1982, Dev. Biol., 93:59-72). By using image intensification we have extended these observations in the sea urchin to the pluteus larval stage, in which greater than 60% of the embryos have localized fluorescent sperm components. Because of the unusual persistence of the sperm components in the embryo, a characterization of the nature of the labeled species in sea urchin sperm was undertaken. Approximately 10% of the 125IFC was in sperm polypeptides of Mr greater than 15,000. These proteins were on the sperm surface as shown by their sensitivity to externally added proteases. The remainder of the 125IFC in sperm was in several low- molecular-weight species, none of which was 125IFC-derivatized phospholipid. To determine if any labeled sperm polypeptides remained intact in the embryo after fertilization, 125IFC-labeled sperm proteins were recovered from one-cell and late gastrula stage embryos by using an anti-IFC immunoadsorbent. Most of the labeled sperm proteins were degraded shortly after fertilization; however, distinct sets of labeled polypeptides were recovered from both one-cell and gastrula stage embryos. Six of the labeled polypeptides recovered from both embryonic stages had identical SDS gel mobilities as labeled sperm polypeptides. Other polypeptides in the embryos appeared to arise from limited proteolysis of sperm proteins. Thus, in this physiological cell fusion system, individual sperm proteins are transferred to the egg at fertilization, and some persist intact or after specific, limited degradation long after gamete fusion, until at least the late gastrula stage.  相似文献   

16.
Newly synthesized DNA-binding proteins were isolated from the nuclei and, separately from, the cytoplasm of sea urchin mofula stage embryos. The presence of 5-bromodeoxyuridine during embryogenesis did not appear to alter the synthesis of either class of DNA-binding proteins. This result tends to argue that cell differentiation in early embryos is not regulated by differential synthesis of DNA-binding proteins. Sea urchin mofulae synthesize a broad range, by molecular weight, or cytoplasmic DNA-binding proteins which dissociate from sea urchin DNA-cellulose at relatively high salt concentrations (0.6-2.0 M NaCl). The most prominant of these apparently high-binding-affinity proteins has an approximate molecular weight of 33,000.  相似文献   

17.
A modification of the two-dimensional electrophoretic method that involves nonequilibrium pH gradients has been adapted for high resolution of chromatin proteins from sea urchin embryos. A simple method of labeling the protein, in vitro, by reductive methylation with boro[3H]hydride to a specific activity of 100,000 cpm/μg of protein is detailed. Chromatin protein may be labeled, in vivo with 14C-amino acids, and newly synthesized (3H and 14C-labeled) and preexistent proteins (only 3H labeled) may be distinguished. The method reveals that sea urchin embryo chromatin contains over 200 proteins.  相似文献   

18.
Extracts of unfertilized sea urchin eggs contain at least two isoforms of cytoplasmic dynein. One exhibits a weak affinity for microtubules and is primarily soluble. The other isoform, HMr-3, binds to microtubules in an ATP-sensitive manner, but is immunologically distinct from the soluble egg dynein (Porter et al.: Journal of Biological Chemistry 263:6759-6771, 1988). We have now further distinguished these egg dynein isoforms based on differences in NTPase activity. HMr-3 copurifies with NTPase activity, but it hydrolyzes CTP at 10 times the rate of ATP. The soluble egg dynein is similar to flagellar dynein in its nucleotide specificity; its MgCTPase activity is ca. 60% of its MgATPase activity. Non-ionic detergents and salt activate the MgATPase activities of both enzymes relative to their MgCTPase activities, but this effect is more pronounced for the soluble egg dynein than for HMr-3. Sucrose gradient-purified HMr-3 promotes an ATP-sensitive microtubule bundling, as seen with darkfield optics. We have also isolated a 20 S microtubule translocating activity by sucrose gradient fractionation of egg extracts, followed by microtubule affinity and ATP release. This 20 S fraction, which contains the HMr-3 isoform, induces a microtubule gliding activity that is distinct from kinesin. Our observations suggest that soluble dynein resembles axonemal dynein, but that HMr-2 is related to the dynein-like enzymes isolated from a variety of cell types and may represent the cytoplasmic dynein of sea urchin eggs.  相似文献   

19.
Adenylyl cyclases (ACs) synthesize cAMP and are present in cells as transmembrane AC and soluble AC (sAC). In sperm, the cAMP produced regulates ion channels and it also activates protein kinase-A that in turn phosphorylates specific axonemal proteins to activate flagellar motility. In mammalian sperm, sAC localizes to the midpiece of flagella, whereas in sea urchin sperm sAC is along the entire flagellum. Here we show that in sea urchin sperm, sAC is complexed with proteins of the plasma membrane and axoneme. Immunoprecipitation shows that a minimum of 10 proteins is tightly associated with sAC. Mass spectrometry of peptides derived from these proteins shows them to be: axonemal dynein heavy chains 7 and 9, sperm specific Na+/H+ exchanger, cyclic nucleotide-gated ion channel, sperm specific creatine kinase, membrane bound guanylyl cyclase, cyclic GMP specific phosphodiesterase 5A, the receptor for the egg peptide speract, and alpha- and beta-tubulins. The sAC-associated proteins could be important in linking membrane signal transduction to energy utilisation in the regulation of flagellar motility.  相似文献   

20.
The mechanisms of protein incorporation and turnover in 9+2 ciliary axonemes are not known. Previous reports of an HSP70-related protein, first in Chlamydomonas flagella and then in sea urchin embryonic cilia, suggested a potential role in protein transport or incorporation. The present study further explores this and other chaperones in axonemes from a representative range of organisms. Two-dimensional gel electrophoresis proved identity between the sea urchin ciliary 78 kDa HSP and a constitutive cytoplasmic HSP70 cognate (pI = 5.71). When isolated flagella from mature sea urchin sperm were analyzed, the same total amount and distribution of 78 kDa protein as in cilia were found. Antigens of similar size were detected in ctenophore comb plate, molluscan gill, and rabbit tracheal cilia. Absent from sea urchin sperm flagella, TCP-1alpha was detected in sea urchin embryonic and rabbit tracheal cilia; the latter also contained HSP90, detected by two distinct antibodies. Tracheal cilia were shown to undergo axonemal protein turnover while tracheal cells mainly synthesized ciliary proteins. TCP-1alpha progressively appeared in regenerating embryonic cilia only as their growth slowed, suggesting a regulatory role in incorporation or turnover. These results demonstrate that chaperones are widely distributed ciliary and flagellar components, potentially related to axonemal protein dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号