首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Calcium-dependent regulation of actin filament bundling by lipocortin-85   总被引:3,自引:0,他引:3  
Lipocortin-85 (L-85, calpactin-I/lipocortin-II heterotetramer) binds to F-actin in the presence of calcium with high affinity and in a cooperative manner. Quantitative analysis of binding curves indicate an apparent Kd (L-85) of 0.226 microM +/- 0.153 (2 S.D., n = 3), a stoichiometry of L-85/actin of 1:1.9 and a Hill coefficient of 1.37 +/- 0.14 (2 S.D., n = 3). Large anisotropic bundles were visualized by electron microscopy under these conditions, and quantitation of bundling by both low speed sedimentation and light scattering yielded apparent Kd values between 0.12 and 0.27 microM L-85. Filament bundling was dependent upon calcium, and the calcium sensitivity was increased by raising the molar ratio of lipocortin-85/F-actin. At saturating levels of L-85, apparent K0.5 values of 0.1-2 microM Ca2+f were obtained. The monomeric heavy chain, lipocortin-II, bundled F-actin to a much lesser extent and at much higher concentrations than for lipocortin-85. Bundling of F-actin by lipocortin-I was not detected at molar ratios of lipocortin-I to actin as high as 2.5 mol/mol (lipocortin-I/actin). At 5-10 microM Ca2+f and saturating levels of L-85, F-actin bundling progressed very rapidly with a t0.5 of 6 s. The process was quickly reversed by the addition of excess EGTA, and bundles could be reformed by the addition of a second burst of 5-10 microM Ca2+f. Thus, our data suggest that lipocortin-85 can rapidly regulate F-actin bundling in a calcium-dependent manner at physiologically relevant calcium levels.  相似文献   

2.
The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.  相似文献   

3.
The dependence of polarized fluorescence of rhodaminylphalloin specifically bound to F-actin and the tension developed by a fiber upon phosphorylation of myosin (18.5 kD) light chains as well as on the concentration of free Ca2+ was observed during the contraction of glycerinated rabbit skeletal muscle fibers. Still greater changes in the polarized fluorescence and higher values of tension were recorded for fibers with phosphorylated light chains at low (0.6 microM) Ca2+ concentrations as well as for those with dephosphorylated light chains at high (10 microM) Ca2+ concentrations. It is concluded that phosphorylation of myosin light chains modulates skeletal muscle contraction. The mechanisms of modulation involve conformational changes in F-actin.  相似文献   

4.
5.
1. Sodium-free contractures were studied in myocardial strips from R. pipiens when extracellular sodium (Na+o) was replaced by choline chloride and extracellular free calcium (Ca2+o) was defined with EGTA-buffer. 2. Resting membrane potentials (RMP) were normal in sodium-free solutions with Ca2+o calculated below 1.0 x 10(-9) mol/l. 3. When Ca2+o was subsequently increased from zero to 1.0 x 10(-3) mol/l Na+-free contractures developed slowly with unchanged RMP even at maximum contracture, at which the intracellular ultrastructure is grossly altered. 4. The contractures developed significantly faster in the presence of 3 x 10(-6) mol/l ouabain. 5. In sodium-free solutions La3+ did not influence Ca2+-dependent contractures, apart from causing an increase in time to maximum contracture. 6. It is concluded that sarcolemmal integrity is maintained in frog myocardium treated initially with Na+/Ca2+-free solutions and then with Na+-free medium containing 1 mmol/l Ca2+. 7. Our experiments indicate that sodium-free, Ca2+o-dependent contractures are mediated by the Na+/Ca2+-exchange, operation at higher rates when Na+i is increased. La3+ (1 mmol/l) probably does not compete with Ca2+ at extracellular binding sites of the exchanger. 8. The Na+/Ca2+-exchange may under certain experimental conditions be able to increase Ca2+i to cytotoxic concentrations.  相似文献   

6.
We studied the cholinergic stimulation of isolated and enriched rat parietal cells. H+ production was indirectly measured by the uptake of 14C-aminopyrine into the parietal cells. Stimulation by carbachol required the presence of extracellular Ca2+ not only in the initial phase but also during the sustained phase of a 100-min incubation period. The response to carbachol was prevented by the Ca2+ entry blocker lanthanum IC50: 1.5 X 10(-7) mol/l). Furthermore, the dependence on Ca2+ influx of cholinergic stimulation was demonstrated by a 269% increase in total intracellular Ca2+ in response to carbachol, as determined by optical emission spectrometry. The naphthalene sulfonamides W7 and W5 which bind calmodulin and thus block the intracellular transduction of Ca2+ effects also inhibited a carbachol-induced H+ production. In the following experiments we studied the effect of agents which activate the protein kinase C, an enzyme which is supposed to play a key role in intracellular signal transduction of Ca2+-dependent effects. Phospholipase C is supposed to activate protein kinase C via induction of the phosphoinositol breakdown. In our preparation of isolated rat parietal cells, phospholipase C (4-100 mU/ml) exerted inhibition instead of amplification of the response to 10(-4) mol/l carbachol. Similarly, the direct activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate or by 1-oleoyl-2-acetyl-sn-glycerol (both tested at 10(-7) to 10(-5) mol/l) reduced the submaximal and maximal response to 10(-5) or 10(-4) mol/l carbachol. We conclude that the cholinergic stimulation of rat parietal cells is dependent on the influx of extracellular Ca2+. Calmodulin seems to mediate intracellular Ca2+ effects during cholinergic stimulation. The activation of protein kinase C impairs carbachol-induced H+ production instead of augmenting the response. This might be due to an already maximal activation of protein kinase C by carbachol alone or to autoregulatory down-regulation by the protein kinase C of muscarinic parietal-cell receptors.  相似文献   

7.
Scinderin, a novel Ca2+-activated actin filament-severing protein, has been purified to homogeneity from bovine adrenal medulla using a combination of several chromatographic procedures. The protein has an apparent mol. wt of 79,600 +/- 450 daltons, three isoforms (pIs 6.0, 6.1 and 6.2) and two Ca2+ binding sites (Kd 5.85 x 10(-7) M, Bmax 0.81 mol Ca2+/mol protein and Kd 2.85 x 10(-6) M, Bmax 1.87 mol Ca2+/mol protein). Scinderin interacts with F-actin in the presence of Ca2+ and produces a decrease in the viscosity of actin gels as a result of F-actin filament severing as demonstrated by electron microscopy. Scinderin is a structurally different protein from chromaffin cell gelsolin, another actin filament-severing protein described. Scinderin and gelsolin have different mol. wts, isoelectric points, amino acid composition and yield different peptide maps after limited proteolytic digestion by either Staphylococcus V8 protease or chymotrypsin. Moreover, scinderin antibodies do not cross-react with gelsolin and gelsolin antibodies fail to recognize scinderin. Immunofluorescence with anti-scinderin demonstrated that this protein is mainly localized in the subplasmalemma region of the chromaffin cell. Immunoblotting tests with the same antibodies indicated that scinderin is also expressed in brain and anterior as well as posterior pituitary. Presence of scinderin and gelsolin, two Ca2+-dependent actin filament-severing proteins in the same tissue, suggests the possibility of synergistic functions by the two proteins in the control of cellular actin filament networks. Alternatively, the actin filament-severing activity of the two proteins might be under the control of different transduction and modulating influences.  相似文献   

8.
Interaction of tropomyosin with F-actin-heavy meromyosin complex   总被引:1,自引:0,他引:1  
The effect of phosphorylated and dephosphorylated heavy meromyosins (HMMs) saturated with Ca2+ or Mg2+ on the binding of tropomyosin to F-actin and on the conformational changes of tropomyosin on actin was investigated. The experimental data were analysed on the basis of th emodel of cooperative binding of tropomyosin to F-actin with overlapping binding sites. In general, attachment of both HMMs to F-actin increased around 100-fold the tropomyosin-binding affinity but concomittantly reduced the cooperatively of binding. In the presence of Ca2+ and in the absence of ATP the binding of tropomyosin to F-actin in a "doubly contiguous" manner was three-fold stronger for F-actin saturated with dephosphorylated HMM as compared to phosphorylated HMM. Under the same rigor conditions but in the absence of Ca2+ the reverse was true but the difference was about 1.5-fold. The binding stoichiometry of tropomyosin to actin was 7:1 in the presence of dephosphorylated HMM saturated with Ca2+ or phosphorylated-saturated with Mg2+ and tended to be about 6:1 for both after the exchange of the cation bound to myosin heads. Bound HMM was also found to influence the fluorescence polarization of 1,5-IAEDANS-labelled tropomyosin complexed with F-actin in muscle ghost fibres. In the presence of Ca2+, the amount of randomly arranged tropomyosin fluorophores decreased when dephosphorylated HMM was bound to ghost fibres, in contrast to an observed increase in the case of bound phosphorylated HMM. Thus HMM induced conformational changes of tropomyosin in the actin-tropomyosin complex that was reflected in an alteration of the geometrical arrangement between tropomyosin and actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Schäufele N  Diener M 《Life sciences》2005,77(20):2489-2499
Voltage-dependent Ca2+ channels of fura-2-loaded ganglionic cells from the myenteric plexus of newborn rats were pharmacologically characterised. In contrast to completely dissociated myenteric cells, intact ganglia showed a stronger loading with the Ca2+-sensitive dye and a reproducible stimulation of the fura-2 signal by the cholinergic agonist, carbachol. A depolarisation-induced increase in the intracellular Ca2+ concentration ([Ca2+]i) was induced by superfusion with 35 mmol l(-1) KCl. This increase in [Ca2+]i was sensitive to Ni2+ and Co2+ as well as omega-conotoxin MVIIA, omega-agatoxin IVA, and SNX-482. The strongest inhibition was achieved by nifedipine (5 x 10(-7) mol l(-1)) and omega-conotoxin GVIA (4.3 x 10(-7) mol l(-1)). These two blockers also inhibited the [Ca2+]i increase evoked by nicotinic receptor stimulation. Consequently, isolated myenteric ganglia in culture express different types of voltage-dependent Ca2+ channels, from which the L- and the N-type seem to be the most important. When exposed to mediators of inflammation such as tumor necrosis factor-alpha (TNF-alpha) or different prostaglandins, no pronounced alterations in the fura-2 ratio were observed suggesting that changes in the Ca2+-signalling are not centrally involved in the response of enteric ganglionic cells to these paracrine substances.  相似文献   

10.
The thermodynamic change in the binding of Ca2+ to a mutant human lysozyme having an engineered Ca2+ binding site (Kuroki, R., Taniyama, Y., Seko, C., Nakamura, H., Kikuchi, M., and Ikehara, M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6903-6907) was analyzed by calorimetry and interpreted in terms of structural information obtained from x-ray crystallography. It was found that the enthalpic contribution for the Ca2+ binding reaction was small, driven primarily by entropy release (10 kcal/mol). This release of entropy was also observed in some organic chelators. Moreover, through the information of the tertiary structures of the apo- and holomutant lysozyme, it was confirmed that the entropy release (10 kcal/mol) upon the binding of Ca2+ arises primarily from the release of bound water molecules hydrating the free Ca2+. Previous studies of Ca2+ binding to proteins have involved significant changes in protein conformation. They can now be reevaluated to determine the contribution of conformational changes to Ca2+ binding. After removing the thermodynamic contribution of Ca2+ binding itself, it is found that upon the binding of Ca2+ the enthalpy change is negative but is almost compensated by the negative entropy change. The negative change in both enthalpy and entropy is characteristic of values seen in the thermodynamic change upon the folding of proteins.  相似文献   

11.
In this study the properties of the 45Ca2+ influx in human red blood cells (RBC) induced by NaVO3 or ATP-depletion were compared. Both NaVO3-induced and ATP-depletion-induced 45Ca2+ influxes were in the range 10(-6)-10(-5) mol Ca2+ x l(-1)cells x h(-1). The saturatability of ATP-depletion-induced 45Ca2+ influx with Ca2+ was much less pronounced than that of NaVO3-induced 45Ca2+ influx. The NaVO3-induced Ca2+ influx was sensitive to nifedipine (IC50 = 50 micromol/l) and Cu2+ (IC50 = 9 micromol/l) but these inhibitors had only a marginal effect when ATP-depletion was used as the Ca2+ influx inducer. On the other hand, polymyxin B (PXB) (1-5 mg/ml) strongly stimulated the ATP-depletion-induced 45Ca2+ influx whereas its effect on the NaVO3-induced Ca2+ influx was biphasic, with about 10% stimulation at lower PXB concentrations and an inhibition of 40% at higher concentrations. SDS-PAGE revealed that both NaVO3 and PXB induced changes in the protein phosphorylation pattern in the presence of Ca2+. NaVO3 stimulated the phosphorylation of several proteins and this effect was counteracted by PXB. The comparison of the kinetics and temperature dependencies of the Gárdos effect induced by NaVO3 and the ATP-depletion showed marked differences. The ability of NaVO3 to induce the Gárdos effect dramatically increased in ATP-depleted cells. These findings indicate that the 45Ca2+ influxes preceding the activation of the Ca2+-activated K+ efflux (Gárdos effect) stimulated by NaVO3 and by ATP-depletion, are mediated by different transport pathways. In addition, obtained results demonstrate that ATP-depletion and NaVO3-treatment exert additive action in triggering the Gárdos effect.  相似文献   

12.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.  相似文献   

13.
We purified to homogeneity rat brain S100b protein, which constitutes about 90% of the soluble S100 protein fraction. Purified rat S100b protein comigrates with bovine S100b protein in nondenaturant system electrophoresis but differs in its amino acid composition and in its electrophoretic mobility in urea-sodium dodecyl sulfate-polyacrylamide gel with bovine S100b protein. The properties of the Ca2+ and Zn2+ binding sites on rat S100b protein were investigated by flow dialysis and by fluorometric titration, and the conformation of rat S100b in its metal-free form as well as in the presence of Ca2+ or Zn2+ was studied. The results were compared with those obtained for the bovine S100b protein. In the absence of KCl, rat brain S100b protein is characterized by two high-affinity Ca2+ binding sites with a KD of 2 X 10(-5) M and four lower affinity sites with KD about 10(-4) M. The calcium binding properties of rat S100b protein differ from bovine S100b only by the number of low-affinity calcium binding sites whereas similar Ca2+-induced conformational changes were observed for both proteins. In the presence of 120 mM KCl rat brain S100b protein bound two Zn2+-ions/mol of protein with a KD of 10(-7) M and four other with lower affinity (KD approximately equal to 10(-6) M). The occupancy of the two high-affinity Zn2+ binding sites was responsible for most of the Zn2+-induced conformational changes in the rat S100b protein. No increase in the tyrosine fluorescence quantum yield after Zn2+ binding to rat S100b was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of calcium ions on conformational changes of F-actin initiated by decoration of thin filaments with phosphorylated and dephosphorylated heavy meromyosin from smooth muscles was studied by fluorescence polarization spectroscopy. It is shown that heavy meromyosin with phosphorylated regulatory light chains (pHMM) promotes structural changes of F-actin which are typical for the "strong" binding of actin to the myosin heads. Heavy meromyosin with dephosphorylated regulatory light chains (dpHMM) causes conformational changes of F-actin which are typical for the "weak" binding of actin to the myosin heads. The presence of calcium enhances the pHMM effect and attenuates the dpHMM effect. We propose that a Ca2+-dependent mechanism exists in smooth muscles which modulates the regulation of actin--myosin interaction occurring via phosphorylation of myosin regulatory light chains.  相似文献   

15.
Azalomycin F (AMF), a macrocyclic lactone antibiotic, in concentrations of 10(-5) g/ml (10(-6) - 10(-5) mol/l) was found to stimulate both the 45Ca2+ influx and efflux in intact Trichoderma viride submerged mycelium and in cells of Saccharomyces cerevisiae without having Ca2+ ionophoric properties. AMF also inhibited ATP-dependent Ca2+ uptake in membrane fractions prepared from T. viride submerged mycelium. 45Ca2+ which had been accumulated in membrane fractions in an ATP-dependent manner was released upon addition of AMF. This release was observed in light organellar fractions (LOF) of S. cerevisiae and of T. viride submerged mycelium and, to a small extent, in heavy organellar fraction (HOF) of S. cerevisiae. No Ca2+ releasing effect of AMF was observed in HOF from T. viride submerged mycelium. In S. cerevisiae expressing Ca2+-dependent photoprotein aequorin, AMF induced transients of luminescence which reflect changes in the cytoplasmic Ca2+ concentration. The results suggest that the stimulation by AMF of the Ca2+ efflux from the mycelium (cells) could be explained by an increase of the cytoplasmic Ca2+ concentration due to the release of Ca2+ from microsomal membranes or to the stimulation of Ca2+ influx.  相似文献   

16.
Cytological and statistical studies on the effects of exogenous Ca2 + on in vitro pollen tube growth and generative nucleus (GN) division of tobacco (Nicotiana tabacum L. ) were conducted in an artificial experimental system. Under normal cultured conditions, the rate of GN division increased logarithmically in general, and reaches the climax at about 10 - 18 h. Among the treatments with various Ca2 + concentrations, 10- 3 mol/L was the optimal concentration for pollen tube growth, whereas other Ca2+ concentrations showed increasing inhibitory effect with the time of culture. Generally, Ca2 + concentrations at 10-2 and 10-3 mol/L favored GN division more than the others. Compared with 10-3 mol/L Ca2 + concentration at 10-2 mol/L benefitiated GN division at earlier stage of the treatment, but afterwards showed inhibitory effect gradually. Besides, the authors designed another series of experiments, in which 10-2, 10-1 mol/L Ca2+ (final concentrations) or 2,10 mmol/L EG-TA was respectively added to the medium containing 10-3 mol/L Ca2+ at 10 h of culture. Pollen tube growth was inhibited by the high Ca2+ treatments, especially being severely effected by 10-l mol/L Ca2 + from which wall, thickening of the tube tip, amitotic division of GN leading to micronucleus formation occurred. 10-2 mol/L Ca2 + treatment, however, promoted GN division at the earlier stage of treatment ( 10 - 12 h). EGTA treatments inhibited both pollen tube growth and GN division.  相似文献   

17.
Phosphorylase plays an important role in energy generation during muscle contraction. We have demonstrated that purified rabbit skeletal muscle phosphorylase a and phosphorylase b bind to rabbit muscle F-actin, F-actin-tropomyosin, F-actin-tropomyosin-troponin, and myofibrils. Neither phosphorylase a nor phosphorylase b binds to myosin. Phosphorylase a and b bind to F-actin with S0.5 values of 1.5 X 10(-6) and 2.1 X 10(-6) M, respectively. At saturation, 0.035 mol of phosphorylase a and b is bound for every seven G-actin monomers in the F-actin polymer. Using the F-actin-tropomyosin-troponin complex as opposed to F-actin as a binding target, there are five- and threefold increases in the maximal binding capacity for phosphorylase a and phosphorylase b, respectively, without a significant change in the S0.5 value for either form of the enzyme. A similar stoichiometry and affinity of phosphorylase binding are observed when myofibrils are used as the binding target. Ca2+ ions and AMP increase the maximal binding capacity for phosphorylase a to myofibrils while ATP decreases the Bmax. Our study suggests that in skeletal muscle, phosphorylase a and phosphorylase b may interact with the thin filament, and that this binding to thin filament proteins may be controlled by changes in sarcoplasmic concentration of Ca2+ and ligands of phosphorylase during muscle contraction.  相似文献   

18.
The polarized fluorescence of intrinsic tryptophan residues and the birefringence of ghost muscle fibres of rabbit were measured during thin filaments binding to heavy meromyosin containing 5,5'-dithiobis [2-nitrobenzoic acid] light chains and to those devoid of them with a view of investigating conformational changes in F-actin. Ca2+ binding to heavy meromyosin containing 5,5'-dithiobis [2-nitrobenzoic acid] light chains was shown to affect the character of these changes during the formation of the F-actin - heavy meromyosin complex.  相似文献   

19.
In calmodulin depleted membranes from human erythrocytes, the Ca2+-dependent phosphatase showed different sensitivity to calmodulin and ATP with variable affinity towards free calcium concentrations: a calmodulin-dependent activity with high calcium affinity, K1/2 = 1.2 X 10(-7) mol/l calcium, that was fully activated at submicromolar calcium concentrations, higher concentrations being rather inhibitory; an ATP-dependent activity with lower calcium affinity, K1/2 = 10(-6) mol/l calcium, that was fully activated at 10(-5) mol/l calcium in the presence of 50-200 mumol/l ATP and was insensitive to calmodulin, and a calcium dependent phosphatase that was active at a wider ranger of free calcium, 10(-8)-10(-5) mol/l, and required the presence of both calmodulin and ATP.  相似文献   

20.
Sarcoplasmic reticulum vesicles were noncovalently labeled at micromolar concentrations with the polycationic fluorescent reagent 4',6-diamidino-2-phenylindole (DAPI), and changes in the fluorescence intensity of the membrane-bound dye associated with functions of the Ca2+ pump and Ca2+ release were investigated. It was found that 1) DAPI fluorescence changed in the [Ca2+] range in which high affinity Ca2+ binding to the Ca2+-ATPase takes place. The time course of the Ca2+-induced changes of DAPI fluorescence was essentially the mirror image of that of tryptophan fluorescence. 2) The fluorescence intensity of bound DAPI decreased upon increase of the intravesicular [Ca2+] by either ATP-dependent Ca2+ accumulation or incubation with millimolar Ca2+ in the presence of a calcium ionophore. 3) Upon induction of Ca2+ release by adding caffeine after the completion of Ca2+ uptake, DAPI fluorescence showed transient changes. Two classes of binding sites of the sarcoplasmic reticulum membrane for DAPI were clearly distinguishable: a high affinity site (Ka = 3.0 X 10(5) M-1) with a capacity of about 1 mol/mol of Ca2+-ATPase (8.0 nmol/mg of protein) and low affinity sites with about 20-fold lower affinity and 10-fold larger capacity. The partially purified Ca2+-ATPase showed similar characteristics of high affinity DAPI binding, suggesting that DAPI bound to its high affinity site on the Ca2+-ATPase monitors the enzyme conformational changes coupled with the events described above. The high affinity binding of DAPI to the enzyme led to an increase of the initial rate of Ca2+ uptake and the inhibition of Ca2+ release induced by caffeine or ionic replacement. These results suggest that the Ca2+-ATPase is involved in some steps of the Ca2+ release mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号