首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that electropherograms of DNA sequences can be modeled with hidden Markov models. Basecalling, the procedure that determines the sequence of bases from the given eletropherogram, can then be performed using the Viterbi algorithm. A training step is required prior to basecalling in order to estimate the HMM parameters. In this paper, we propose a Bayesian approach which employs the Markov chain Monte Carlo (MCMC) method to perform basecalling. Such an approach not only allows one to naturally encode the prior biological knowledge into the basecalling algorithm, it also exploits both the training data and the basecalling data in estimating the HMM parameters, leading to more accurate estimates. Using the recently sequenced genome of the organism Legionella pneumophila we show that the MCMC basecaller outperforms the state-of-the-art basecalling algorithm in terms of total errors while requiring much less training than other proposed statistical basecallers.  相似文献   

2.
MOTIVATION: In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. RESULTS: We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.  相似文献   

3.
A hidden Markov model (HMM) of electrocardiogram (ECG) signal is presented for detection of myocardial ischemia. The time domain signals that are recorded by the ECG before and during the episode of local ischemia were pre-processed to produce input sequences, which is needed for the model training. The model is also verified by test data, and the results show that the models have certain function for the detection of myocardial ischemia. The algorithm based on HMM provides a possible approach for the timely, rapid and automatic diagnosis of myocardial ischemia, and also can be used in portable medical diagnostic equipment in the future.  相似文献   

4.
A hidden Markov model (HMM) of electrocardiogram (ECG) signal is presented for detection of myocardial ischemia. The time domain signals that are recorded by the ECG before and during the episode of local ischemia were pre-processed to produce input sequences, which is needed for the model training. The model is also verified by test data, and the results show that the models have certain function for the detection of myocardial ischemia. The algorithm based on HMM provides a possible approach for the timely, rapid and automatic diagnosis of myocardial ischemia, and also can be used in portable medical diagnostic equipment in the future.  相似文献   

5.
SUMMARY: Hidden Markov models (HMMs) are widely used for biological sequence analysis because of their ability to incorporate biological information in their structure. An automatic means of optimizing the structure of HMMs would be highly desirable. However, this raises two important issues; first, the new HMMs should be biologically interpretable, and second, we need to control the complexity of the HMM so that it has good generalization performance on unseen sequences. In this paper, we explore the possibility of using a genetic algorithm (GA) for optimizing the HMM structure. GAs are sufficiently flexible to allow incorporation of other techniques such as Baum-Welch training within their evolutionary cycle. Furthermore, operators that alter the structure of HMMs can be designed to favour interpretable and simple structures. In this paper, a training strategy using GAs is proposed, and it is tested on finding HMM structures for the promoter and coding region of the bacterium Campylobacter jejuni. The proposed GA for hidden Markov models (GA-HMM) allows, HMMs with different numbers of states to evolve. To prevent over-fitting, a separate dataset is used for comparing the performance of the HMMs to that used for the Baum-Welch training. The GA-HMM was capable of finding an HMM comparable to a hand-coded HMM designed for the same task, which has been published previously.  相似文献   

6.
Summary We examine situations where interest lies in the conditional association between outcome and exposure variables, given potential confounding variables. Concern arises that some potential confounders may not be measured accurately, whereas others may not be measured at all. Some form of sensitivity analysis might be employed, to assess how this limitation in available data impacts inference. A Bayesian approach to sensitivity analysis is straightforward in concept: a prior distribution is formed to encapsulate plausible relationships between unobserved and observed variables, and posterior inference about the conditional exposure–disease relationship then follows. In practice, though, it can be challenging to form such a prior distribution in both a realistic and simple manner. Moreover, it can be difficult to develop an attendant Markov chain Monte Carlo (MCMC) algorithm that will work effectively on a posterior distribution arising from a highly nonidentified model. In this article, a simple prior distribution for acknowledging both poorly measured and unmeasured confounding variables is developed. It requires that only a small number of hyperparameters be set by the user. Moreover, a particular computational approach for posterior inference is developed, because application of MCMC in a standard manner is seen to be ineffective in this problem.  相似文献   

7.
Hidden Markov modeling (HMM) can be applied to extract single channel kinetics at signal-to-noise ratios that are too low for conventional analysis. There are two general HMM approaches: traditional Baum's reestimation and direct optimization. The optimization approach has the advantage that it optimizes the rate constants directly. This allows setting constraints on the rate constants, fitting multiple data sets across different experimental conditions, and handling nonstationary channels where the starting probability of the channel depends on the unknown kinetics. We present here an extension of this approach that addresses the additional issues of low-pass filtering and correlated noise. The filtering is modeled using a finite impulse response (FIR) filter applied to the underlying signal, and the noise correlation is accounted for using an autoregressive (AR) process. In addition to correlated background noise, the algorithm allows for excess open channel noise that can be white or correlated. To maximize the efficiency of the algorithm, we derive the analytical derivatives of the likelihood function with respect to all unknown model parameters. The search of the likelihood space is performed using a variable metric method. Extension of the algorithm to data containing multiple channels is described. Examples are presented that demonstrate the applicability and effectiveness of the algorithm. Practical issues such as the selection of appropriate noise AR orders are also discussed through examples.  相似文献   

8.
Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters   总被引:2,自引:0,他引:2  
Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.  相似文献   

9.
QTL analysis in arbitrary pedigrees with incomplete marker information   总被引:3,自引:0,他引:3  
Vogl C  Xu S 《Heredity》2002,89(5):339-345
Mapping quantitative trait loci (QTL) in arbitrary outbred pedigrees is complicated by the combinatorial possibilities of allele flow relationships and of the founder allelic configurations. Exact methods are only available for rather short and simple pedigrees. Stochastic simulation using Markov chain Monte Carlo (MCMC) integration offers more flexibility. MCMC methods are less natural in a frequentist than in a Bayesian context, which we therefore adopt. Among the MCMC algorithms for updating marker locus genotypes, we implement the descent-graph algorithm. It can be used to update marker locus allele flow relationships and can handle arbitrarily complex pedigrees and missing marker information. Compared with updating marker genotypic information, updating QTL parameters, such as position, effects, and the allele flow relationships is relatively easy with MCMC. We treat the effect of each diploid combination of founder alleles as a random variable and only estimate the variance of these effects, ie, we model diploid genotypic effects instead of the usual partition in additive and dominance effects. This is a variant of the random model approach. The number of QTL alleles is generally unknown. In the Bayesian context, the number of QTL present on a linkage group can be treated as variable. Computer simulations suggest that the algorithm can indeed handle complex pedigrees and detect two QTL on a linkage group, but that the number of individuals in a single extended family is limited to about 50 to 100 individuals.  相似文献   

10.
Markov chain-Monte Carlo (MCMC) techniques for multipoint mapping of quantitative trait loci have been developed on nuclear-family and extended-pedigree data. These methods are based on repeated sampling-peeling and gene dropping of genotype vectors and random sampling of each of the model parameters from their full conditional distributions, given phenotypes, markers, and other model parameters. We further refine such approaches by improving the efficiency of the marker haplotype-updating algorithm and by adopting a new proposal for adding loci. Incorporating these refinements, we have performed an extensive simulation study on simulated nuclear-family data, varying the number of trait loci, family size, displacement, and other segregation parameters. Our simulation studies show that our MCMC algorithm identifies the locations of the true trait loci and estimates their segregation parameters well-provided that the total number of sibship pairs in the pedigree data is reasonably large, heritability of each individual trait locus is not too low, and the loci are not too close together. Our MCMC algorithm was shown to be significantly more efficient than LOKI (Heath 1997) in our simulation study using nuclear-family data.  相似文献   

11.
ABSTRACT

Actigraphy is widely used in sleep studies but lacks a universal unsupervised algorithm for sleep/wake identification. An unsupervised algorithm is useful in large-scale population studies and in cases where polysomnography (PSG) is unavailable, as it does not require sleep outcome labels to train the model but utilizes information solely contained in actigraphy to learn sleep and wake characteristics and separate the two states. In this study, we proposed a machine learning unsupervised algorithm based on the Hidden Markov Model (HMM) for sleep/wake identification. The proposed algorithm is also an individualized approach that takes into account individual variabilities and analyzes each individual actigraphy profile separately to infer sleep and wake states. We used Actiwatch and PSG data from 43 individuals in the Multi-Ethnic Study of Atherosclerosis study to evaluate the method performance. Epoch-by-epoch comparisons and sleep variable comparisons were made between our algorithm, the unsupervised algorithm embedded in the Actiwatch software (AS), and the pre-trained supervised UCSD algorithm. Using PSG as the reference, the accuracy was 85.7% for HMM, 84.7% for AS, and 85.0% for UCSD. The sensitivity was 99.3%, 99.7%, and 98.9% for HMM, AS, and UCSD, respectively, and the specificity was 36.4%, 30.0%, and 31.7%, respectively. The Kappa statistic was 0.446 for HMM, 0.399 for AS, and 0.311 for UCSD, suggesting fair to moderate agreement between PSG and actigraphy. The Bland–Altman plots further show that the total sleep time, sleep latency, and sleep efficiency estimates by HMM were closer to PSG with narrower 95% limits of agreement than AS and UCSD. All three methods tend to overestimate sleep and underestimate wake compared to PSG. Our HMM approach is also able to differentiate relatively active and sedentary individuals by quantifying variabilities in activity counts: individuals with higher estimated activity variabilities tend to show more frequent sedentary behaviors. Our unsupervised data-driven HMM algorithm achieved better performance than the commonly used Actiwatch software algorithm and the pre-trained UCSD algorithm. HMM can help expand the application of actigraphy in cases where PSG is hard to acquire and supervised methods cannot be trained. In addition, the estimated HMM parameters can characterize individual activity patterns and sedentary tendencies that can be further utilized in downstream analysis.  相似文献   

12.
Ayres KL  Balding DJ 《Genetics》2001,157(1):413-423
We describe a Bayesian approach to analyzing multilocus genotype or haplotype data to assess departures from gametic (linkage) equilibrium. Our approach employs a Markov chain Monte Carlo (MCMC) algorithm to approximate the posterior probability distributions of disequilibrium parameters. The distributions are computed exactly in some simple settings. Among other advantages, posterior distributions can be presented visually, which allows the uncertainties in parameter estimates to be readily assessed. In addition, background knowledge can be incorporated, where available, to improve the precision of inferences. The method is illustrated by application to previously published datasets; implications for multilocus forensic match probabilities and for simple association-based gene mapping are also discussed.  相似文献   

13.
Inference of population structure under a Dirichlet process model   总被引:1,自引:0,他引:1       下载免费PDF全文
Huelsenbeck JP  Andolfatto P 《Genetics》2007,175(4):1787-1802
Inferring population structure from genetic data sampled from some number of individuals is a formidable statistical problem. One widely used approach considers the number of populations to be fixed and calculates the posterior probability of assigning individuals to each population. More recently, the assignment of individuals to populations and the number of populations have both been considered random variables that follow a Dirichlet process prior. We examined the statistical behavior of assignment of individuals to populations under a Dirichlet process prior. First, we examined a best-case scenario, in which all of the assumptions of the Dirichlet process prior were satisfied, by generating data under a Dirichlet process prior. Second, we examined the performance of the method when the genetic data were generated under a population genetics model with symmetric migration between populations. We examined the accuracy of population assignment using a distance on partitions. The method can be quite accurate with a moderate number of loci. As expected, inferences on the number of populations are more accurate when theta = 4N(e)u is large and when the migration rate (4N(e)m) is low. We also examined the sensitivity of inferences of population structure to choice of the parameter of the Dirichlet process model. Although inferences could be sensitive to the choice of the prior on the number of populations, this sensitivity occurred when the number of loci sampled was small; inferences are more robust to the prior on the number of populations when the number of sampled loci is large. Finally, we discuss several methods for summarizing the results of a Bayesian Markov chain Monte Carlo (MCMC) analysis of population structure. We develop the notion of the mean population partition, which is the partition of individuals to populations that minimizes the squared partition distance to the partitions sampled by the MCMC algorithm.  相似文献   

14.
MOTIVATION: Dynamic programming is the core algorithm of sequence comparison, alignment and linear hidden Markov model (HMM) training. For a pair of sequence lengths m and n, the problem can be solved readily in O(mn)time and O(mn)space. The checkpoint algorithm introduced by Grice et al. (CABIOS, 13, 45--53, 1997) runs in O(Lmn)time and O(Lm(L) square root of n)space, where L is a positive integer determined by m, n, and the amount of available workspace. The algorithm is appropriate for many string comparison problems, including all-paths and single-best-path hidden Markov model training, and is readily parallelizable. The checkpoint algorithm has a diagonal version that can solve the single-best-path alignment problem in O(mn)time and O(m + n)space. RESULTS: In this work, we improve performance by analyzing optimal checkpoint placement. The improved row checkpoint algorithm performs up to one half the computation of the original algorithm. The improved diagonal checkpoint algorithm performs up to 35% fewer computational steps than the original. We modified the SAM hidden Markov modeling package to use the improved row checkpoint algorithm. For a fixed sequence length, the new version is up to 33% faster for all-paths and 56% faster for single-best-path HMM training, depending on sequence length and allocated memory. Over a typical set of protein sequence lengths, the improvement is approximately 10%.  相似文献   

15.
Rasmussen TK  Krink T 《Bio Systems》2003,72(1-2):5-17
Multiple sequence alignment (MSA) is one of the basic problems in computational biology. Realistic problem instances of MSA are computationally intractable for exact algorithms. One way to tackle MSA is to use Hidden Markov Models (HMMs), which are known to be very powerful in the related problem domain of speech recognition. However, the training of HMMs is computationally hard and there is no known exact method that can guarantee optimal training within reasonable computing time. Perhaps the most powerful training method is the Baum-Welch algorithm, which is fast, but bears the problem of stagnation at local optima. In the study reported in this paper, we used a hybrid algorithm combining particle swarm optimization with evolutionary algorithms to train HMMs for the alignment of protein sequences. Our experiments show that our approach yields better alignments for a set of benchmark protein sequences than the most commonly applied HMM training methods, such as Baum-Welch and Simulated Annealing.  相似文献   

16.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.  相似文献   

17.
Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution determined by the state of the hidden Markov chain. We present a Bayesian solution to the problem of restoring the sequence of states visited by the hidden Markov chain from a given sequence of observed outputs. Our approach is based on a Monte Carlo Markov chain algorithm that allows us to draw samples from the full posterior distribution of the hidden Markov chain paths. The problem of estimating the probability of individual paths and the associated Monte Carlo error of these estimates is addressed. The method is illustrated by considering a problem of DNA sequence multiple alignment. The special structure for the hidden Markov model used in the sequence alignment problem is considered in detail. In conclusion, we discuss certain interesting aspects of biological sequence alignments that become accessible through the Bayesian approach to HMM restoration.  相似文献   

18.
Use of runs statistics for pattern recognition in genomic DNA sequences.   总被引:2,自引:0,他引:2  
In this article, the use of the finite Markov chain imbedding (FMCI) technique to study patterns in DNA under a hidden Markov model (HMM) is introduced. With a vision of studying multiple runs-related statistics simultaneously under an HMM through the FMCI technique, this work establishes an investigation of a bivariate runs statistic under a binary HMM for DNA pattern recognition. An FMCI-based recursive algorithm is derived and implemented for the determination of the exact distribution of this bivariate runs statistic under an independent identically distributed (IID) framework, a Markov chain (MC) framework, and a binary HMM framework. With this algorithm, we have studied the distributions of the bivariate runs statistic under different binary HMM parameter sets; probabilistic profiles of runs are created and shown to be useful for trapping HMM maximum likelihood estimates (MLEs). This MLE-trapping scheme offers good initial estimates to jump-start the expectation-maximization (EM) algorithm in HMM parameter estimation and helps prevent the EM estimates from landing on a local maximum or a saddle point. Applications of the bivariate runs statistic and the probabilistic profiles in conjunction with binary HMMs for pattern recognition in genomic DNA sequences are illustrated via case studies on DNA bendability signals using human DNA data.  相似文献   

19.
Yi N 《Genetics》2004,167(2):967-975
In this article, a unified Markov chain Monte Carlo (MCMC) framework is proposed to identify multiple quantitative trait loci (QTL) for complex traits in experimental designs, based on a composite space representation of the problem that has fixed dimension. The proposed unified approach includes the existing Bayesian QTL mapping methods using reversible jump MCMC algorithm as special cases. We also show that a variety of Bayesian variable selection methods using Gibbs sampling can be applied to the composite model space for mapping multiple QTL. The unified framework not only results in some new algorithms, but also gives useful insight into some of the important factors governing the performance of Gibbs sampling and reversible jump for mapping multiple QTL. Finally, we develop strategies to improve the performance of MCMC algorithms.  相似文献   

20.
Liang LJ  Weiss RE 《Biometrics》2007,63(3):733-741
Phylogenetic modeling is computationally challenging and most phylogeny models fit a single phylogeny to a single set of molecular sequences. Individual phylogenetic analyses are typically performed independently using publicly available software that fits a computationally intensive Bayesian model using Markov chain Monte Carlo (MCMC) simulation. We develop a Bayesian hierarchical semiparametric regression model to combine multiple phylogenetic analyses of HIV-1 nucleotide sequences and estimate parameters of interest within and across analyses. We use a mixture of Dirichlet processes as a prior for the parameters to relax inappropriate parametric assumptions and to ensure the prior distribution for the parameters is continuous. We use several reweighting algorithms for combining completed MCMC analyses to shrink parameter estimates while adjusting for data set-specific covariates. This avoids constructing a large complex model involving all the original data, which would be computationally challenging and would require rewriting the existing stand-alone software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号