首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The relationship between sugary disease incidence and six climatic variables during the early stages of flowering was determined in field trials conducted over three seasons. Daily maximum temperature was highly significantly correlated with sugray disease incidence and accounted for 83 % of the variation observed in disease incidence. The critical period for infection was limited to 5 days after commencement of pollen shed. Deviations from the temperature × sugary disease model occurred in late flowering plots. These were correlated with low temperatures during the 2 weeks prior to pollen shed and, thus, possibly, a reduction in pollen vigour.  相似文献   

2.
High temperature reduces crop production; however, little is known about the effects of high night temperature (HNT) on the development of male and female reproductive organs, pollination, kernel formation and grain yield in maize (Zea mays L.). Therefore, a temperature-controlled experiment was carried out using heat-sensitive maize hybrid and including three temperature treatments of 32/22°C (day/night; control), 32/26°C and 32/30°C during 14 consecutive days encompassing the flowering stage. When exposed to 30°C night temperature, grain yield and kernel number reduced by 23.8 and 25.1%, respectively, compared with the control. The decrease in grain yield was mainly because of the lower kernel number rather than change in kernel weight under HNT exposure around flowering. No significant differences in grain yield and kernel number were found between 22 and 26°C night temperatures. HNT had no significant effects on the onset of flowering time and anthesis-silking interval but significantly reduced time period of pollen shedding duration and pollen viability, and increased leaf night respiration. Different from high daytime temperature, HNT had no lasting effects on daytime leaf photosynthesis, biomass production and assimilate transportation. From the perspective of source–flow–sink relationship, the unchanged source and flow capacities during daytime are supposed to alleviate the adverse effects on sink strength caused by HNT compared with daytime heat stress. These new findings commendably filled the knowledge gaps concerning heat stress in maize.  相似文献   

3.
Abstract. Comparisons were made between the changes in mRNA levels induced by low night temperatures in the cold–sensitive tomato and two altitudinal ecotypes of the wild species L. hirsutum. Changes in mRNA levels were detected by resolving in vitro translation products of poly(A)+ RNA by 2-D PAGE. The treatment was applied by first growing plants in a thermoperiod of 25/18°C and then switching to 25/6°C. All tomatoes displayed a diurnal cycling in which a set of mRNAs accumulated at the end of the 18°C nights, whereas another accumulated at the end of the 25°C days. The accumulation of night specific mRNAs was inhibited by 6°C nights in the cold sensitive tomatoes while that of the tolerant one was only marginally affected. All tomatoes showed a similar reduction in the apparent turnover rate of the day specific mRNAs during the 6°C nights. Finally, low night temperatures induced the accumulation of six to eight mRNAs in all genotypes. This number increased by 15 in L. esculentum after the seventh night and are likely involved in stress response rather than acclimation/tolerance. The tomato is proposed as a genetic model to discriminate genes involved in acclimation/tolerance from those involved in stress response.  相似文献   

4.
High night temperatures during floral development induce male sterility in cowpea (Vigna unguiculata [L.] Walp.). The objectives of this study were to determine: the possible causes of the male sterility; the stage of floral development when damage due to heat stress occurs; and whether specific tissues are damaged during the period of sensitivity to heat. Plants were grown under controlled temperatures in both greenhouses and growth chambers in separate experiments. Floral development was normal under a night temperature of 20 C, whereas flowers developed under high night temperature (30 C) set no pods due to low pollen viability and anther indehiscence. Anthers developed under 33/30 C day/night temperatures did not exhibit endothecial formation, whereas anthers developed under 33/20 C day/night temperatures exhibited normal development of the endothecial layer. Reciprocal transfers of plants between chambers with high or optimum night temperature demonstrated that the stage of floral development most sensitive to heat stress occurs 9 to 7 d before anthesis. Anthers developed under either optimal or high night temperatures were compared cytologically. Development was similar through meiosis, but after tetrad release, which occurred 8 d before anthesis, the tapetal layer degenerated prematurely under high night temperature. Premature degeneration of the tapetal layer and lack of endothecial development may be responsible for the low pollen viability, low anther dehiscence, and low pod set under high night temperatures.  相似文献   

5.
In sorghum (Sorghum bicolor [L.] Moench), the impact of heat stress during flowering on seed set is known, but mechanisms that lead to tolerance are not known. A diverse set of sorghum genotypes was tested under controlled environment and field conditions to ascertain the impact of heat stress on time-of-day of flowering, pollen viability, and ovarian tissue. A highly conserved early morning flowering was observed, wherein >90% of spikelets completed flowering within 30 min after dawn, both in inbreds and hybrids. A strong quantitative impact of heat stress was recorded before pollination (reduced pollen viability) and post pollination (reduced pollen tube growth and linear decline in fertility). Although viable pollen tube did reach the micropylar region, 100% spikelet sterility was recorded under 40/22°C (day/night temperatures), even in the tolerant genotype Macia. Heat stress induced significant damage to the ovarian tissue near the micropylar region, leading to highly condensed cytoplasmic contents and disintegrated nucleolus and nucleus in the susceptible genotype RTx430. Whereas, relatively less damages to ovarian cell organelles were observed in the tolerant genotype Macia under heat stress. Integrating higher tolerance in female reproductive organ will help in effective utilization of the early morning flowering mechanism to enhance sorghum productivity under current and future hotter climate.  相似文献   

6.
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits—critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior—along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)—across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.  相似文献   

7.
Hardening and dehardening responses of two contrasting varietiesof Lolium perenne, measured as LT50 estimates, were followedin fluctuating temperature environments. Unhardened seedlingswere exposed to hardening environments for 7, 14, and 21 d inall combinations of 2, 4, 6, 8 and 10 C with either high dayand low night temperatures or low day and high night temperatures.Seedlings hardened for 28 d at 2 C were exposed to dehardeningenvironments in all combinations of 4, 6, 8, 10, and 12 C withhigh day and low night temperatures. A low day, or night, temperature of 2 C in combination withany other temperature increased hardening compared with theconstant higher temperature. For Premo, a hardy variety, thisincrease was 3 C when night temperature was reduced from 10to 2 C in combination with a day temperature of 10 C. Similarly,a low night temperature reduced the dehardening response ofPremo to higher day temperatures. At 12 C this effect on LT60was greater than 2 C. Much smaller responses to daily periodsof low temperature were found for the less hardy variety, GrasslandsRuanui. During each 24-h period, exposures to 2 C of longer than 4h were required to achieve greater hardening than that achievedin continuous 10 C treatments. Hardiness was not improved furtherby exposures longer than 8 h. Responses to diurnal temperature fluctuations were discussedin relation to possible mechanisms and to changes in hardinessduring the winter under different weather systems. Lolium perenne, cold hardening, cold dehardening, diurnal temperature fluctuations, varieties  相似文献   

8.
矮嵩草光合作用与环境因素关系的比较研究   总被引:19,自引:4,他引:19       下载免费PDF全文
 以青海高原不同海拔地区生长的矮嵩草(Kobresia humilis)为材料,研究高山植物光合作用随海拔梯度的变化特征及对生长环境和低温胁迫的反应。随海拔升高矮嵩草叶绿素含量有降低的趋势,而叶绿素a/b值和类胡萝卜素含量则随海拔升高而增高。生长地区海拔越高矮嵩草光合速率、光补偿点、光饱和点越高;而光合表观量子产额则随海拔升高而降低。光呼吸强度有随海拔升高而降低的趋势。矮嵩草光合作用特性受生长环境因素的影响。低温胁迫导致矮嵩草光合速率、表观量子产额降低,低温下的光照加剧了光合作用抑制的程度。  相似文献   

9.
Red cotton bug Dysdercus koenigii F. (Hemiptera: Pyrrhocoridae), is found destructive pest in various cotton growing areas. Under natural conditions insects are highly subjected to thermal stresses. In present work the developmental duration and survival rate of all immature stages, adult longevity and reproduction of D. koenigii by exposed to rapid changes in very low temperatures were studied. When 3 h short-stress of low temperatures (12–0 °C) was given to different stages of D. koenigii, the results revealed that survival rate of all stages were significantly reduced. Survival rate of female was significantly higher than male after exposed to cold temperature stress. Mating percentage, fecundity and hatching percentage were decreased significantly with the decrease of short-term cold temperature stress. Based on these results, we concluded that the developmental duration, survival rate and reproduction of D. koenigii significantly affected when they exposed to short term cold temperature stress.  相似文献   

10.
11.
Flavonoids are thought to function in the plant stress response and male fertility in some, but not all, species. We examined the effects of a self-fertile chalcone synthase null allele, a, for the effects of heat and light stress on fertilization success and flower production in Ipomoea purpurea. Pollen recipients and pollen donors of both homozygous genotypes exhibit reduced fertilization success at high temperatures, indicating that high temperature acts as a stress-lowering fertilization success. Homozygous aa individuals exhibit reduced male and female fertilization success, compared to AA individuals, at high temperatures but not at low temperatures. In addition, aa individuals produce fewer flowers than AA individuals at low temperatures, but not at high temperatures. These results suggest that flavonoids alleviate heat stress on fertilization success. They also suggest that pleiotropic effects at the A locus may explain the low frequency of the a allele in natural populations.  相似文献   

12.
Rice crops are vulnerable to low temperatures. During development, the reproductive stage is particularly sensitive to cold exposure, which causes abnormal pollen development and a high degree of male sterility. In this study, shotgun proteomic analysis was used to analyze rice anthers containing pollen grains from a cold-tolerant variety, Dianxi 4. Protein expression was compared between normal anthers and anthers exposed to cold temperatures at the young microspore stage. In total, 3835 non-redundant proteins were identified in the rice anther. Of these, 441 proteins were differentially expressed between normal and cold-treated anthers. Pollen allergens, ATP synthase, actin, profilin, and β-expansin proteins were highly abundant, reflecting anther development, pollen germination, and pollen tube elongation. Starch and sucrose metabolic proteins such as α-amylase precursor and 4-α-glucanotransferase exhibited reduced expression after cold exposure. Among the proteins that exhibited increased expression after cold exposure, C2 domain proteins, and GRPs were identified as candidate signaling factors for mediation of the cold tolerance response. Through high-throughput proteomic analysis we were able to reveal proteomic changes against cold stress and suggest two signaling factors as the candidate genes.  相似文献   

13.
Four near-isogenic lines of wheat (Triticum aestivum L.em Thell)were used to compare selected night temperatures for their effectivenessas vernalizing temperatures. All treatments (conducted withina phytotron) had a common day temperature of 20 °C for 12h and night temperatures were 4, 7, 10, 13 and 20 °C. Interpretationof results for reproductive development was confounded by threeinteracting factors, their relative importance varying withgenotype. Firstly, development rate was generally slower atlower night temperatures. Secondly, in contrast, there was atendency for lower night temperatures to hasten developmentrate if vernalization requirements were satisfied. Thirdly,the lower night temperatures provided a more favourable environmentfor leaf production such that for some genotypes, vernalizedplants had higher final leaf numbers than unvernalized plants.Only for the genotype with the strongest vernalization response(vrn1 vrn2) did hastening of development due to vernalizationoverride any delaying effects. For this genotype, 4, 7 and 10°C were vernalizing temperatures. For the other three genotypes,any hastening of development due to vernalization was outweighedby delaying effects of lower night temperatures. Spikelet numberand days to anthesis were positively correlated in three ofthe four genotypes. It appeared that differences in spikeletnumber were a direct result of night temperature influencingthe duration of the spikelet phase and/or rate of spikelet initiation.Plant size at flowering was determined by the differential effectsof night temperature on growth and development rates. Triticum aestivum L., wheat, vernalization, night temperature, isogenic lines  相似文献   

14.
The indole-3-acetic acid (IAA) concentration in leaves and stamens of the normal and a temperature-sensitive male sterile ‘stamenless-2′ (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.), grown under three temperature conditions, was measured by gas chromatography — mass spectrometry — selected ion monitoring (GC-MS-SIM) and by enzyme-linked immunosorbant assay (ELISA). At low (LTR, 18°C day/15°C night), intermediate (ITR, 23°C day/18°C night), and high temperatures (HTR, 28°C day/23°C night), the mutant leaves had approximately 10 to 20 times higher IAA concentrations, respectively, than the normal leaves under these temperature regimes. Similarly, the stamens of mutant flowers had approximately five and eight times higher IAA concentration at ITR and HTR, respectively, than the normal flowers. In the low temperature reverted mutant stamens, however, the level of IAA was similar to that in normal stamens. Also, with an increase in temperature, there was an increase in the level of IAA in the leaves and stamens of mutant plants. However, different temperatures had no appreciable effect on the IAA content of leaves and stamens of normal plants. It is suggested that the high IAA content in leaves and stamens of the stamenless-2 mutant is one of the factors associated with male sterility and carpellization of stamens in this mutant.  相似文献   

15.
Chilling stress (<10°C) at reproductive phase of chickpea results in abortion of flowers and pods leading to poor yield. The metabolic causes associated with cold sensitivity of chickpea are not well understood. Hence, in the present study, we evaluated four chickpea genotypes (ICC 16348, ICC 16349, PBG1 and GPF2) having contrasting cold sensitivity for their reproductive growth and metabolism subjected to cold stress (average day temperature: 17.6°C; average night temperature: 4.9°C). Genotypes ICC 16348 and ICC 16349 showed flowering and set pods, while PBG1 and GPF2 failed to do so during the stress conditions indicating the former to be cold tolerant. The stress injury in the leaves such as increase in electrolyte leakage, decrease in chlorophyll content and relative leaf water content was significantly less in ICC 16348 and ICC 16349 genotypes. The analysis of carbohydrates indicated total sugars and starch to be present in greater content in ICC 16348 and ICC 16349 relative to PBG1 and GPF2 genotypes. The enzymes related to carbohydrate metabolism such as β-amylase, invertase and sucrose synthase showed significantly higher activity in the leaves of ICC 16348 and ICC 16349 compared to the other two genotypes. PBG1 and GPF2 genotypes experienced greater oxidative stress measured as malondialdehyde and hydrogen peroxide. ICCV 16348 and ICC 16349 possessed significantly higher levels of enzymatic (superoxide dismutase, catalase, ascorbate peroxidase) and non-enzymatic antioxidants (proline and ascorbic acid) relative to PBG1 and GPF2. Particularly, proline and ascorbic acid were markedly higher in cold-tolerant genotypes compared to the sensitive ones suggesting their deciding role in governing the cold tolerance.  相似文献   

16.
Gong Z  Dong CH  Lee H  Zhu J  Xiong L  Gong D  Stevenson B  Zhu JK 《The Plant cell》2005,17(1):256-267
An Arabidopsis thaliana mutant, cryophyte, was isolated and found to have an enhanced cold stress-induction of the master regulator of cold tolerance, C-repeat binding factor 2 (CBF2), and its downstream target genes. The mutant is more tolerant to chilling and freezing stresses but is more sensitive to heat stress. Under warm but not cold growth temperatures, the mutant has a reduced stature and flowers earlier. Under long day conditions, flowering of the mutant is insensitive to vernalization. The mutant is also hypersensitive to the phytohormone abscisic acid. The mutation was found in a DEAD box RNA helicase gene that is identical to the previously identified low expression of osmotically responsive genes 4 (LOS4) locus, which was defined by the los4-1 mutation that reduces cold regulation of CBFs and their target genes and renders Arabidopsis plants chilling sensitive. We show evidence suggesting that the CRYOPHYTE/LOS4 protein may be enriched in the nuclear rim. In situ poly(A) hybridization indicates that the export of poly(A)+ RNAs is blocked in the cryophyte/los4-2 mutant at warm or high temperatures but not at low temperatures, whereas the los4-1 mutation weakens mRNA export at both low and warm temperatures. These results demonstrate an important role of the CRYOPHYTE/LOS4 RNA helicase in mRNA export, plant development, and stress responses.  相似文献   

17.
BACKGROUND AND AIMS: Bromus tectorum (cheatgrass or downy brome) is an exotic annual grass that is dominant over large areas of former shrubland in western North America. To flower in time for seed production in early summer, B. tectorum plants generally require vernalization at winter temperatures, either as imbibed seeds or as established seedlings. METHODS: Variation in response to increasing periods of vernalization as seeds or seedlings for progeny of ten full-sib families from each of four B. tectorum populations from contrasting habitats was studied. KEY RESULTS: As vernalization was increased from 0 to 10 weeks, the proportion of plants flowering within 20 weeks increased, weeks to initiation of flowering decreased, and seed yield per plant increased, regardless of whether plants were vernalized as seeds or seedlings. Most of the variation was accounted for by differences among populations. Plants of the warm desert population flowered promptly even without vernalization, while those of the cold desert, foothill and montane populations showed incremental changes in response variables as a function of vernalization period. Populations differed in among-family variance, with the warm desert population generally showing the least variance and the cold desert population the most. Variation among populations and among families within populations decreased as vernalization period increased, whereas the non-genetic component of variance showed no such pattern. CONCLUSIONS: Variation in vernalization response was found to be adaptively significant and apparently represents the result of contrasting selection regimes on a range of founder genotypes.  相似文献   

18.
Silene latifolia Poiret is a reliable model system for studying many of the classical problems in biology because little difference in its physiological response to environmental stimuli has been found between genders. In this experiment, we studied flowering responses to day length in male and female S. latifolia plants grown at different temperatures. The primary objective was to examine whether flowering in male and female plants was differentially influenced by day length and temperature. We hypothesized that temperature would interact with day length in affecting flowering, because both genders have been found to flower in a wide range of day lengths and temperatures. Plants were grown in environmental chambers at a target temperature of 15/10 or 30/25°C (day/night). Day length was increased by half-hour intervals until all plants had flowered. Results showed that S. latifolia is a qualitative long-day plant with a critical day length of 11 h. Flowering accelerated with increasing day length until 16.5 h, when all plants flowered. Males and females differed in relative flowering at different day lengths, but to a greater extent at high than at low temperature. This study demonstrated that flowering of male and female S. latifolia respond differently to day length at different temperatures. A more uniform experimental protocol, especially in controlled environments, is called for to make this model system a more useful tool in biological studies.  相似文献   

19.
Summary The flowering behaviour of 17 Pisum mutants and 20 recombinants was studied under three different temperatures using long-day phytotron conditions. A constant low temperature of 12.5 ° C led to a strong delay in flowering in all the genotypes tested but distinct relative differences could be found between them. Relative differences were also present with regard to speed of ontogenetic development under a permanent high temperature of 25.5 °C or under an alternating change between low and high temperature. Under the low temperature, recombinants R 20D and R 20E, carrying gene efr for earliness, entered the flowering period more than 4 weeks later than the donor of efr, demonstrating thereby a negative influence of one of the other mutant genes on efr. The high temperature of 25 °C influenced the flowering behaviour of 4 fasciated genotypes negatively — in contrast to the other strains studied. The plants of recombinant R 405 produced only tiny flower buds under these conditions. None of the plants of recombinant R 142F flowered under either the constant low or high temperature — they need the change of low and higher temperature for normal flower formation. The experiments show that most of the genotypes tested react specifically to the three temperature conditions offered to them.  相似文献   

20.
王娜  邵晨  颉志刚  凌云  程东海 《生态学报》2012,32(11):3538-3545
全球气候变化是造成世界范围内两栖类种群衰退和灭绝的重要因素之一。随着极端天气出现变得日趋频繁,非季节性的、短期且剧烈的气温变化可能会严重干扰两栖类动物的生存与种群稳定。监测了浙江省金华市南山野生虎纹蛙(Hoplobatrachus rugulosus)分布区冬季的环境气温,并参考监测数据在实验室条件下研究了虎纹蛙在短期梯度降温(2℃/24 h)和急性冷暴露(即冷休克)(2℃)下的生存力及冷休克对机体免疫功能和抗氧化能力的影响。结果表明,虎纹蛙在冬季(2009-12-01—2010-03-31)经历的温度范围普遍在0—14℃之间,主要遭遇的低温区间在0—4℃,主要高温区间在10—14℃。通过梯度降温实验,发现温度降至12℃累积死亡率约为28.1%,10℃为87.5%,8℃为100%。在一定温度范围内,虎纹蛙死亡率与环境温度呈显著负相关(Pearson test,r=-0.952,P<0.05)。经曲线拟合,回归方程计算可得半数致死温度为11.5℃。虎纹蛙在冷休克处理下,在第6 h累积死亡率为45%,12 h为80%,24 h达到100%。虎纹蛙死亡率与冷休克时间呈显著正相关(Pearson test,r=0.91,P<0.05),半数致死时间为7.6 h。此外,冷休克(2℃,6 h)显著抑制了虎纹蛙脾脏巨噬细胞呼吸爆发强度(t=3.827,df=6,P<0.05)、全血吞噬活性(t=5.388,df=3.037,P<0.05)及胃溶菌酶活力(t=6.37,df=6,P<0.05);肝脏(t=0.773,df=8,P>0.05)和肾脏(t=0.164,df=4.542,P>0.05)组织脂质过氧化物产物丙二醛(MDA)的含量虽无明显变化,但肝脏(t=-2.817,df=6,P<0.05)和肾脏(t=-11.302,df=6,P<0.05)组织抗氧化物谷胱甘肽(GSH)含量及肝脏(t=-3.3,df=6,P<0.05)超氧化物歧化酶(SOD)活性均显著升高。上述结果表明虎纹蛙对低温较为敏感,冷休克能够诱导机体的免疫抑制,并导致机体对抗氧化物质需求的增加。可以推测,当遭遇极端低温天气时,低温胁迫可能会严重干扰虎纹蛙生理机能,加大种群的生存压力和疾病感染的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号