首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Genetic algorithms and optimization in general, enable us to probe deeper into the metabolic pathway recipe for multi-product biosynthesis. An augmented model for optimizing serine and tryptophan flux ratios simultaneously in Escherichia coli, was developed by linking the dynamic tryptophan operon model and aromatic amino acid-tryptophan biosynthesis pathways to the central carbon metabolism model. Six new kinetic parameters of the augmented model were estimated with considerations of available experimental data and other published works. Major differences between calculated and reference concentrations and fluxes were explained. Sensitivities and underlying competition among fluxes for carbon sources were consistent with intuitive expectations based on metabolic network and previous results. Biosynthesis rates of serine and tryptophan were simultaneously maximized using the augmented model via concurrent gene knockout and manipulation. The optimization results were obtained using the elitist non-dominant sorting genetic algorithm (NSGA-II) supported by pattern recognition heuristics. A range of Pareto-optimal enzyme activities regulating the amino acids biosynthesis was successfully obtained and elucidated wherever possible vis-à-vis fermentation work based on recombinant DNA technology. The predicted potential improvements in various metabolic pathway recipes using the multi-objective optimization strategy were highlighted and discussed in detail.  相似文献   

3.
4.
5.
6.
We investigated the structural, functional, and regulatory properties of the Shigella dysenteriae tryptophan (trp.) operon in transduction hybrids in which the cysB-trp-region of Escherichia coli is replaced by the corresponding region from S. dysenteriae. Tryptophan biosynthesis was largely blocked in the hybrids, although the order of the structural genes was identical with that of E. coli. Nutritional tests and enzyme assays revealed that the hybrids produced a defective anthranilate synthetase (ASase). Deletion mapping identified two distinct sites in trpE, each of which was partially responsible for the instability and low activity of ASase. We also discovered a pleiotropic site trpP (S) that maps outside the structural gene region and is closely linked to the S. dysenteriae trp operator. trpP (S) reduced the rate of trp messenger ribonucleic acid synthesis, and consequently trp enzyme levels, 10-fold relative to wild-type E. coli. In recombinants in which the structural genes of E coli were under the control of the S. dysenteriae promoter, enzyme levels were also reduced 10-fold. In some fast-growing revertants of the original hybrids, the rates of trp messenger ribonucleic acid synthesis and levels of tryptophan synthetase were restored to values characteristic of wild-type E.coli. Thus, the Trp auxotrophy associated with the S dysenteriae trp operon derives from the combination of a defective ASase and decreased expression of the entire operon imposed by trpP (S).  相似文献   

7.
8.
Mutants of Escherichia coli were selected in which a single mutational event had both relieved the polar effect of an early trpE mutation on trpB and simultaneously released the expression of trpB from tryptophan repression. The frequency at which these mutations appeared was roughly equal to the frequency of point mutations. In each of these mutants, the mutation increased the function of trpB and also increased the activity of some, but not all, of the other four tryptophan operon genes. Genetic analysis showed that the mutations were not located within the trp operon since in each case the parental trp operon could be recovered from the mutants. Each mutant was shown to carry a duplication of a trp operon segment translocated to a new position near the trp operon. Polarity is relieved since the trpB duplication-translocation is not in the same operon as the trpE polar mutation. The duplicated and translocated segments are fused to operons not regulated by tryptophan, so trpB function is no longer subject to tryptophan repression. The properties of the mutants indicate that the length of the duplicated segment and the position to which it is translocated differ in each of the seven mutants studied. The duplications are unstable, but the segregation pattern observed is not consistent with a single crossover model for segregation. That such duplication-translocation events generate a variety of new genetic arrangements at a frequency comparable with point mutations suggests they may play an important role in evolution.  相似文献   

9.
B. G. Hall 《Genetics》1990,126(1):5-16
Recent reports have called into question the widespread belief "that mutations arise continuously and without any consideration for their utility" (in the words of J. Cairns) and have suggested that some mutations (which Cairns called "directed" mutations) may occur as specific responses to environmental challenges, i.e., they may occur more often when advantageous than when neutral. In this paper it is shown that point mutations in the trp operon reverted to trp+ more frequently under conditions of prolonged tryptophan deprivation when the reversions were advantageous, than in the presence of tryptophan when the reversions were neutral. The overall mutation rate, as determined from the rates of mutation to valine resistance and to constitutive expression of the lac operon, did not increase during tryptophan starvation. The trp reversion rate did not increase when the cells were starved for cysteine for a similar period, indicating that the increased reversion rate was specific to conditions where the reversions were advantageous. Two artifactual explanations for the observations, delayed growth of some preexisting revertants and cryptic growth by some cells at the expense of dying cells within aged colonies, were tested and rejected as unlikely. The trp+ reversions that occurred while trp- colonies aged in the absence of tryptophan were shown to be time-dependent rather than replication-dependent, and it is suggested that they occur by mechanisms different from those that have been studied in growing cells. A heuristic model for the molecular basis of such mutations is proposed and evidence consistent with that model is discussed. It is suggested that the results in this and previous studies can be explained on the basis of underlying random mechanisms that act during prolonged periods of physiological stress, and that "directed" mutations are not necessarily the basis of those observations.  相似文献   

10.
A mathematical model has been developed to study the effect of external tryptophan on the trp operon. The model accounts for the effect of feedback repression by tryptophan through the Hill equation. We demonstrate that the trp operon maintains an intracellular steady-state concentration in a fivefold range irrespective of extracellular conditions. Dynamic behavior of the trp operon corresponding to varying levels of extracellular tryptophan illustrates the adaptive nature of regulation. Depending on the external tryptophan level in the medium, the transient response ranges from a rapid and underdamped to a sluggish and highly overdamped response. To test model fidelity, simulation results are compared with experimental data available in the literature. We further demonstrate the significance of the biological structure of the operon on the overall performance. Our analysis suggests that the tryptophan operon has evolved to a truly optimal design.  相似文献   

11.
R Sterner  A Dahm  B Darimont  A Ivens  W Liebl    K Kirschner 《The EMBO journal》1995,14(18):4395-4402
To better understand the evolution of a key metabolic pathway, we have sequenced the trpCFBA gene cluster of the hyperthermophilic bacterium Thermotoga maritima. The genes were cloned by complementation in vivo of trp deletion strains of Escherichia coli. The new sequences, together with earlier findings, establish that the trp operon of T.maritima has the order trpE(G.D)CFBA, which might represent the ancestral organization of the tryptophan operon. Heterologous expression of the trp(G.D) and trpC genes in E.coli and N-terminal sequencing of their polypeptide products showed that their translation is initiated at the rate start codons TTG and ATC, respectively. Consequently, the N-terminus of the trp(G.D) fusion protein is 43 residues shorter than previously postulated. Amino acid composition and sequence analyses of the protein products of T.maritima trpC (indoleglycerol phosphate synthase), trpF (phosphoribosyl anthranilate isomerase) and trpA (alpha-subunit of tryptophan synthase) suggest that these thermostable (beta alpha)8-barrel proteins may be stabilized by additional salt bridges, compared with the mesostable forms. Another notable feature is the predicted lack of the N-terminal helix alpha 0 in the alpha-subunit of tryptophan synthase.  相似文献   

12.
For the purpose of studying the production of L-tryptophan by Escherichia coli, the deletion mutants of the trp operon (trpAE1) were transformed with mutant plasmids carrying the trp operon whose anthranilate synthase and phosphoribosyl anthranilate transferase (anthranilate aggregate), respectively, had been desensitized to tryptophan inhibition. In addition to release of the anthranilate aggregate from the feedback inhibition required for plasmids such as pSC101 trp.I15, the properties of trp repression (trpR) and tryptophanase deficiency (tnaA) were both indispensable for host strains such as strain Tna (trpAE1 trpR tnaA). The gene dosage effects on tryptophan synthase activities and on production of tryptophan were assessed. A moderate plasmid copy number, approximately five per chromosome, was optimal for tryptophan production. Similarly, an appropriate release of the anthranilate aggregate from feedback inhibition was also a necessary step to ward off the metabolic anomaly. If the mutant plasmid pSC101 trp-I15 was further mutagenized (pSC101 trp.I15.14) and then transferred to Tna cells, an effective enhancement of tryptophan production was achieved. Although further improvement of the host-plasmid system is needed before commercial production of tryptophan can be realized by this means, a promising step toward this goal has been established.  相似文献   

13.
The abilities of 14 tryptophan analogs to repress the tryptophan (trp) operon have been studied in Escherichia coli cells derepressed by incubation with 0.25 mM indole-3-propionic acid (IPA). trp operon expression was monitored by measuring the specific activities of anthranilate synthase (EC 4.1.3.27) and the tryptophan synthase (EC 4.2.1.20) beta subunit. Analogs characterized by modification or removal of the alpha-amino group or the alpha-carboxyl group did not repress the trp operon. The only analogs among this group that appeared to interact with the trp aporepressor were IPA, which derepressed the trp operon, and d-tryptophan. Analogs with modifications of the indole ring repressed the trp operon to various degrees. 7-Methyl-tryptophan inhibited anthranilate synthase activity and consequently derepressed the trp operon. Additionally, 7-methyltryptophan prevented IPA-mediated derepression but, unlike tryptophan, did so in a non-coordinate manner, with the later enzymes of the operon being relatively more repressed than the early enzymes. The effect of 7-methyltryptophan on IPA-mediated derepression was likely not due to the interaction of IPA with the allosteric site of anthranilate synthase, even though feedback-resistant mutants of anthranilate synthase were partially resistant to derepression by IPA. The effect of 7-methyltryptophan on derepression by IPA was probably due to the effect of the analog-aporepressor complex on trp operon expression.  相似文献   

14.
Enhanced operator binding by trp superrepressors of Escherichia coli   总被引:8,自引:0,他引:8  
The trp repressor of Escherichia coli binds to the operators of three operons concerned with tryptophan biosynthesis and regulates their expression. trp superrepressors can repress expression of the trp operon in vivo at lower tryptophan concentrations than those required by the wild-type repressor. The five known superrepressors have been purified and characterized using a modified filter binding assay. In four of the five superrepressors, EK13, EK18, DN46 and EK49, negatively charged wild-type residues located on the surface of the repressor that faces the operator are replaced by positively charged or neutral residues. Each of these proteins has higher affinity for the trp operator than wild-type repressor. Decreased rates of dissociation of the repressor-operator complex were found to be responsible for the higher affinities. The fifth superrepressor, AV77, has an amino acid substitution in the turn of the helix-turn-helix DNA-binding motif. This superrepressor was indistinguishable from wild-type repressor in our filter binding assay. We conclude that rapid dissociation of repressor from operator is important for trp repressor function in vivo. The negatively charged wild-type residues that are replaced in superrepressors are probably responsible for the characteristic rapid dissociation of the trp repressor from the trp operator.  相似文献   

15.
16.
17.
18.
19.
An investigation of repression in the trp system of Escherichia coli was undertaken using operon fusions and plasmids constructed via recombinant DNA technology. The promoters of the trp operon and the trpR gene were fused to lacZ, enabling the activity of these promoters to be evaluated under various conditions through measurements of beta-galactosidase production. In confirmation of earlier studies, the trpR gene was shown to be regulated autogenously. This control feature of the trp system was found to maintain intracellular Trp repressor protein at essentially invariant levels under most conditions studied. Increasing the trpR+ gene dosage did not significantly elevate Trp repressor protein levels, nor did the introduction of additional operator "sinks" result in significantly decreased levels of Trp repressor protein. Definite alterations in intracellular Trp repressor protein levels were achieved only by subverting the normal trpR regulatory elements. The placement of the lacUV5 or the lambda PL promoters upstream of the trpR gene resulted in significant increases in repression of the trp system. Substituting the primary trp promoter/operator for the native trpR promoter/operator resulted in an altered regulatory response of the trp system to tryptophan limitation or excess. The regulation of the trpR gene effectively imparts a broad range of expression to the trp operon in a manner finely attuned to fluctuations in intracellular tryptophan levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号