首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested from in vivo and cryoelectron micrographic studies that the large ribosomal subunit protein L11 and its N-terminal domain play an important role in peptide release by, in particular, the class I release factor RF1. In this work, we have studied in vitro the role of L11 in translation termination with ribosomes from a wild type strain (WT-L11), an L11 knocked-out strain (DeltaL11), and an L11 N terminus truncated strain (Cter-L11). Our data show 4-6-fold reductions in termination efficiency (k(cat)/K(m)) of RF1, but not of RF2, on DeltaL11 and Cter-L11 ribosomes compared with wild type. There is, at the same time, no effect of these L11 alterations on the maximal rate of ester bond cleavage by either RF1 or RF2. The rates of dissociation of RF2 but not of RF1 from the ribosome after peptide release are somewhat reduced by the L11 changes irrespective of the presence of RF3, and they cause a 2-fold decrease in the missense error. Our results suggest that the L11 modifications increase nonsense suppression at UAG codons because of the reduced termination efficiency of RF1 and that they decrease nonsense suppression at UGA codons because of a decreased missense error level.  相似文献   

2.
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.  相似文献   

3.
In the translational termination step of protein synthesis the three termination codons UAA, UAG or UGA are recognized by so-called release or termination factors. The release factor RF-1 interacts with UAG and UAA whereas RF-2 is specific for UGA and UAA. Two mechanisms concerning the termination event have been discussed so far: recognition of the termination codon by the protein in a tRNA-like manner or double-strand formation between the codon and the 3' end of the 16S rRNA which is stabilized by the termination factor. Using equilibrium dialysis we show that 40% of the ribosomes can bind UGAA in an RF-2-dependent manner. The stability with the correct combination RF-2-UGA is tenfold higher as compared to the wrong termination codon UAG. We confirm prior findings that the termination factor RF-2 is bound to the A-site of the ribosome. In addition to the ribosomal proteins L2, L10, L7/L12 and L20 of the large subunit and S6 and S18 of the small subunit, the 16S rRNA became labelled when radioactive UGA was crosslinked to the ribosome in the presence of RF-2. Our data support a mechanism of termination in which a double strand between the termination codon and the 3' end of the 16S rRNA is formed as the starting event. The resulting RNA-RNA double strand in turn may be recognized and stabilized by the termination factor.  相似文献   

4.
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.  相似文献   

5.
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.  相似文献   

6.
The stringent response is activated by the binding of stringent factor to stalled ribosomes that have an unacylated tRNA in the ribosomal aminoacyl-site. Ribosomes lacking ribosomal protein L11 are deficient in stimulating stringent factor. L11 consists of a dynamic N-terminal domain (amino acid residues 1-72) connected to an RNA-binding C-terminal domain (amino acid residues 76-142) by a flexible linker (amino acid residues 73-75). In vivo data show that mutation of proline 22 in the N-terminal domain is important for initiation of the stringent response. Here, six different L11 point and deletion-mutants have been constructed to determine which regions of L11 are necessary for the activation of stringent factor. The different mutants were reconstituted with programmed 70 S(DeltaL11) ribosomes and tested for their ability to stimulate stringent factor in a sensitive in vitro pppGpp synthesis assay. It was found that a single-site mutation at proline 74 in the linker region between the two domains did not affect the stimulatory activity of the reconstituted ribosomes, whereas the single-site mutation at proline 22 reduced the activity of SF to 33% compared to ribosomes reconstituted with wild-type L11. Removal of the entire linker between the N and C-terminal domains or removal of the entire proline-rich helix beginning at proline 22 in L11 resulted in an L11 protein, which was unable to stimulate stringent factor in the ribosome-dependent assay. Surprisingly, the N-terminal domain of L11 on its own activated stringent factor in a ribosome-dependent manner without restoring the L11 footprint in 23 S rRNA in the 50 S subunit. This suggests that the N-terminal domain can activate stringent factor in trans. It is also shown that this activation is dependent on unacylated tRNA.  相似文献   

7.
Ribosomal protein L11 is one of only two ribosomal proteins significantly iodinated when Escherichia coli 50 S subunits are modified by immobilized lactoperoxidase, and the major target has been shown previously to be tyrosine at position 7 in the N-terminal domain. This modification reduces in vitro termination activity with release factor (RF)-1 by 70-90%, but RF-2 activity is less affected (30-50%). The loss of activity parallels incorporation of iodine into the subunit. The 50 S subunits from L11-lacking strains of bacteria have highly elevated activity with RF-2 and low activity with RF-1. The iodination does not affect RF-2 activity but reduces the RF-1 activity further. Ribosomal proteins, L2, L6, and L25, are significantly labeled in L11-lacking ribosomes in contrast to the control 50 S subunits. L11 has been modified in isolation and incorporated back efficiently into L11-lacking ribosomes. This L11, iodinated also predominantly at Tyr 7, is unable to restore RF-1 activity to L11-lacking ribosomes in contrast to mock-iodinated protein. These results suggest the involvement of the N terminus of L11 in the binding domain of the bacterial release factors and indicate that there are subtle differences in how the two factors interact with the ribosome.  相似文献   

8.
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.  相似文献   

9.
G F Short  S Y Golovine  S M Hecht 《Biochemistry》1999,38(27):8808-8819
An in vitro protein synthesizing system was modified to facilitate the improved, site-specific incorporation of unnatural amino acids into proteins via readthrough of mRNA nonsense (UAG) codons by chemically misacylated suppressor tRNAs. The modified system included an S-30 extract derived from Escherichia coli that expresses a temperature-sensitive variant of E. coli release factor 1 (RF1). Mild heat treatment of the S-30 extract partially deactivated RF1 and improved UAG codon readthrough by as much as 11-fold, as demonstrated by the incorporation of unnatural amino acids into positions 25 and 125 of HIV-1 protease and positions 10 and 22 of E. coli dihydrofolate reductase. The increases in yields were the greatest for those amino acids normally incorporated poorly in the in vitro protein synthesizing system, thus significantly enhancing the repertoire of modified amino acids that can be incorporated into the proteins of interest. The substantial increase in mutant protein yields over those obtained with an S-30 extract derived from an RF1 proficient E. coli strain is proposed to result from a relaxed stringency of termination by RF1 at the stop codon (UAG). When RF1 levels were depleted further, the intrinsic rate of DHFR synthesis increased, consistent with the possibility that RF1 competes not only at stop codons but also at other mRNA codons during peptide elongation. It thus seems possible that in addition to its currently accepted role as a protein factor involved in peptide termination, RF1 is also involved in functions that control the rate at which protein synthesis proceeds.  相似文献   

10.
11.
In universal-code eukaryotes, a single class-1 translation termination factor eRF1 decodes all three stop codons, UAA, UAG, and UGA. In some ciliates with variant genetic codes one or two stop codons are used to encode amino acid(s) and are not recognized by eRF1. In Stylonychia, UAG and UAA codons are reassigned as glutamine codons, and in Euplotes, UGA is reassigned as cysteine codon. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of eRF1. Because variant-code ciliates most likely evolved from universal code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. To find out amino acid residues which confer UAR-only specificity to Euplotes aediculatus eRF1, eRFI chimeras were constructed by swapping eRF1 E. aediculatus N-terminal domain sequences with the matching ones from the human protein. In these chimeras the MC-domain was from human eRF1. Functional analysis of these chimeric eRFI highlighted the crucial role of the two regions (positions 38-50 and 123-145) in the N-terminal domain of E. aediculatus eRF1 that restrict E. aediculatus eRF1 specificity toward UAR codons. Possibly, restriction of eRF1 specificity to UAR codons might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UGA to sense codons.  相似文献   

12.
真核生物蛋白质翻译终止过程中,第一类肽链释放因子(eukaryotic polypeptide release factor, eRF1)利用其N端结构域识别终止密码子。eRF1的N结构域中的GTS、NIKS和YxCxxxF模体对于终止密码子的识别发挥重要作用。但至目前为止,eRF1识别终止密码子的机制,尤其是对于终止密码子的选择性识别机制仍不清楚。我们构建了四膜虫(Tetrahymena thermophilia)eRF1的N端结构域与酿酒酵母(Saccharomyces cerevisiae)或裂殖酵母(Schizosaccharomyces pombe)eRF1的M和C结构域组成的杂合eRF1,即Tt/Sc eRF1 和Tt/Sp eRF1。双荧光素酶检测结果证实,两种杂合eRF1在细胞中识别终止密码子的活性具有显著差异。Tt/Sc eRF1仅识别UGA密码子,与四膜虫eRF1一致,具有密码子识别特异性;而Tt/Sp eRF1可以识别3个终止密码子,无密码子识别特异性。为解释这一现象,将Sp eRF1的C结构域中的1个关键的小结构域中的氨基酸进行突变,与Sc eRF1相应位点的氨基酸一致。分析结果显示,突变体Tt/Sp eRF1识别密码子UAA和UAG的性质发生显著变化,说明第一类肽链释放因子的C端结构域参与了终止密码子的识别过程。这提示,四膜虫eRF1识别终止密码子的特异性可能依赖于eRF1分子内的结构域间相互作用。本研究结果为揭示肽链释放因子识别终止密码子的分子机制提供了数据支持。  相似文献   

13.
Ribosomes from three previously described mutants of Escherichia coli lacking L11 ( AM68 , AM76 , and AM77 ) supported in vitro termination with release factor 1 very poorly, but with release factor 2 had a severalfold elevation in activity for this function compared with ribosomes from a control strain or from a mutant containing unmethylated L11. L11 exerts its effect on the binding of the factors into a functional ribosomal complex with the termination codon. Reconstitution of L11 back into the L11-lacking ribosomes restored them to the control phenotype. The NH2-terminal part of L11 (amino acids 1-64) seems critical in modulating release factor binding. This part of L11 has been localized with the use of fragment-specific antibodies on the three-dimensional model of the 50 S subunit in the region from where the L7/L12 stalk originates. IgG antibodies from an antiserum specific for this fragment but not a middle fragment of L11 (amino acids 65-102) strongly inhibited in vitro termination. The activities of the two factors were inhibited differentially by several anti-L11 preparations recognizing antigenic determinants in the NH2-terminal part of L11. In all but one case, release factor 1 was more sensitive. These studies indicate that there are significant differences in the binding domains for the two release factors which are affected by the NH2-terminal part of L11.  相似文献   

14.
Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function.  相似文献   

15.
The eukaryotic translation termination factor eRF3 stimulates release of nascent polypeptides from the ribosome in a GTP-dependent manner. In most eukaryotes studied, eRF3 consists of an essential, conserved C-terminal domain and a nonessential, nonconserved N-terminal extension. However, in some species, this extension is required for efficient termination. Our data show that the N-terminal extension of Saccharomyces cerevisiae eRF3 also participates in regulation of termination efficiency, but acts as a negative factor, increasing nonsense suppression efficiency in sup35 mutants containing amino acid substitutions in the C-terminal domain of the protein.  相似文献   

16.
17.
L11 protein is located at the base of the L7/L12 stalk of the 50 S subunit of the Escherichia coli ribosome. Because of the flexible nature of the region, recent X-ray crystallographic studies of the 50 S subunit failed to locate the N-terminal domain of the protein. We have determined the position of the complete L11 protein by comparing a three-dimensional cryo-EM reconstruction of the 70 S ribosome, isolated from a mutant lacking ribosomal protein L11, with the three-dimensional map of the wild-type ribosome. Fitting of the X-ray coordinates of L11-23 S RNA complex and EF-G into the cryo-EM maps combined with molecular modeling, reveals that, following EF-G-dependent GTP hydrolysis, domain V of EF-G intrudes into the cleft between the 23 S ribosomal RNA and the N-terminal domain of L11 (where the antibiotic thiostrepton binds), causing the N-terminal domain to move and thereby inducing the formation of the arc-like connection with the G' domain of EF-G. The results provide a new insight into the mechanism of EF-G-dependent translocation.  相似文献   

18.
V Bruss  K Vieluf 《Journal of virology》1995,69(11):6652-6657
The large hepatitis B virus (HBV) surface protein (L) forms two isomers which display their N-terminal pre-S domain at the internal and external side of the viral envelope, respectively. The external pre-S domain has been implicated in binding to a virus receptor. To investigate functions of the internal pre-S domain, a secretion signal sequence was fused to the N terminus of L (sigL), causing exclusive expression of external pre-S domains. A fusion construct with a nonfunctional signal (s25L), which corresponds in its primary sequence to sigL cleaved by signal peptidase, was used as a control. SigL was N glycosylated in transfected COS cells at both potential sites in pre-S in contrast to s25L or wild-type L, confirming the expected transmembrane topologies of sigL and s25L. Phenotypic characterization revealed the following points. (i) SigL lost the inhibitory effect of L or s25L on secretion of subviral hepatitis B surface antigen particles, suggesting that the retention signal mapped to the N terminus of L is recognized in the cytosol and not in the lumen of the endoplasmic reticulum. (ii) SigL was secreted into the culture medium even in the absence of the major HBV surface protein (S), while release of an L mutant lacking the retention signal was still dependent on S coexpression. (iii) s25L but not sigL could complement an L-negative HBV genome defective for virion secretion in cotransfections. This suggests that the cytosolic pre-S domain, like a matrix protein, is involved in the interaction of the viral envelope with preformed cytosolic nucleocapsids during virion assembly.  相似文献   

19.
20.
It is known from experiments with bacteria and eukaryotic viruses that readthrough of termination codons located within the open reading frame (ORF) of mRNAs depends on the availability of suppressor tRNA(s) and the efficiency of termination in cells. Consequently, the yield of readthrough products can be used as a measure of the activity of polypeptide chain release factor(s) (RF), key components of the translation termination machinery. Readthrough of the UAG codon located at the end of the ORF encoding the coat protein of beet necrotic yellow vein furovirus is required for virus replication. Constructs harbouring this suppressible UAG codon and derivatives containing a UGA or UAA codon in place of the UAG codon have been used in translation experiments in vitro in the absence or presence of human suppressor tRNAs. Readthrough can be virtually abolished by addition of bacterially-expressed eukaryotic RF1 (eRF1). Thus, eRF1 is functional towards all three termination codons located in a natural mRNA and efficiently competes in vitro with endogenous and exogenous suppressor tRNA(s) at the ribosomal A site. These results are consistent with a crucial role of eRF1 in translation termination and forms the essence of an in vitro assay for RF activity based on the abolishment of readthrough by eRF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号