首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein CsaA has been proposed to function as a protein secretion chaperone in bacteria that lack the Sec-dependent protein-targeting chaperone SecB. CsaA is a homodimer with two putative substrate-binding pockets, one in each monomer. To test the hypothesis that these cavities are indeed substrate-binding sites able to interact with other polypeptide chains, we selected a peptide that bound to CsaA from a random peptide library displayed on phage. Presented here is the structure of CsaA from Agrobacterium tumefaciens (AtCsaA) solved in the presence and absence of the selected peptide. To promote co-crystallization, the sequence for this peptide was genetically fused to the amino-terminus of AtCsaA. The resulting 1.65 Å resolution crystal structure reveals that the tethered peptide from one AtCsaA molecule binds to the proposed substrate-binding pocket of a symmetry-related molecule possibly mimicking the interaction between a pre-protein substrate and CsaA. The structure shows that the peptide lies in an extended conformation with alanine, proline and glutamine side chains pointing into the binding pocket. The peptide interacts with the atoms of the AtCsaA-binding pocket via seven direct hydrogen bonds. The side chain of a conserved pocket residue, Arg76, has an “up” conformation when the CsaA-binding site is empty and a “down” conformation when the CsaA-binding site is occupied, suggesting that this residue may function to stabilize the peptide in the binding cavity. The presented aggregation assays, phage-display analysis and structural analysis are consistent with AtCsaA being a general chaperone. The properties of the proposed CsaA-binding pocket/peptide interactions are compared to those from other structurally characterized molecular chaperones.  相似文献   

2.
The bacterial chaperone SecB assists translocation of proteins across the inner membrane. The mechanism by which it differentiates between secretory and cytosolic proteins is poorly understood. To identify its binding motif, we screened 2688 peptides covering sequences of 23 proteins for SecB binding. The motif is approximately 9 residues long and is enriched in aromatic and basic residues, whereas acidic residues are disfavored. Its identification allows the prediction of binding regions within protein sequences with up to 87% accuracy. SecB-binding regions occur statistically every 20-30 residues. The occurrence and affinity of binding regions are similar in SecB-dependent and -independent secretory proteins and in cytosolic proteins, and SecB lacks specificity toward signal sequences. SecB cannot thus differentiate between secretory and non-secretory proteins via its binding specificity. This conclusion is supported by the finding that SecB binds denatured luciferase, thereby allowing subsequent refolding by the DnaK system. SecB may rather be a general chaperone whose involvement in translocation is mediated by interactions of SecB and signal sequences of SecB-bound preproteins with the translocation apparatus.  相似文献   

3.
SecB, a remarkable chaperone involved in protein export, binds diverse ligands rapidly with high affinity and low specificity. Site‐directed spin labeling and electron paramagnetic resonance spectroscopy were used to investigate the surface of interaction on the export chaperone SecB. We examined SecB in complex with the unfolded precursor form of outer membrane protein OmpA as well as with a truncated version of OmpA that includes the transmembrane domain and lacks both the signal peptide and the periplasmic domain. In addition, we studied the binding of SecB to the unfolded mature form of galactose‐binding protein, a soluble periplasmic protein. We have previously used the same strategy to map the binding surface for the precursor of galactose‐binding protein. We show that for all ligands tested the patterns of contact are the same.  相似文献   

4.
SecB is a molecular chaperone that functions in bacterial post-translational protein translocation pathway. It maintains newly synthesized precursor polypeptide chains in a translocation-competent state and guides them to the translocon via its high-affinity binding to the ligand as well as to the membrane-embedded ATPase SecA. Recent advances in elucidating the structures of SecB have enabled the examination of protein function in the structural context. Structures of SecB from both Haemophilus influenzae and Escherichia coli support the early two-subsite polypeptide-binding model. In addition, the detailed molecular interaction between SecB and SecA was revealed by a structure of SecB in complex with the C-terminal zinc-containing domain of SecA. These observations explain the dual role of SecB plays in the translocation pathway, as a molecular chaperone and a specific targeting factor. A model of SecB-SecA complex suggests that the binding of SecA to SecB changes the conformation of the polypeptide binding sites in the chaperone, enabling transfer of precursor polypeptides from SecB to SecA. Recent studies also show the presence of a second zinc-independent SecB binding site in SecA and the new interaction might contribute to the function of SecB.  相似文献   

5.
Molecular chaperones prevent protein aggregation in vivo and in vitro. In a few cases, multichaperone systems are capable of dissociating aggregated state(s) of substrate proteins, although little is known of the mechanism of the process. SecB is a cytosolic chaperone, which forms part of the precursor protein translocation machinery in Escherichia coli. We have investigated the interaction of the B-chain of insulin with chaperone SecB by light scattering, pyrene excimer fluorescence, and electron spin resonance spectroscopy. We show that SecB prevents aggregation of the B-chain of insulin. We show that SecB is capable of dissociating soluble B-chain aggregates as monitored by pyrene fluorescence spectroscopy. The kinetics of dissociation of the B-chain aggregate by SecB has been investigated to understand the mechanism of dissociation. The data suggests that SecB does not act as a catalyst in dissociation of the aggregate to individual B-chains, rather it binds the small population of free B-chains with high affinity, thereby shifting the equilibrium from the ensemble of the aggregate toward the individual B-chains. Thus SecB can rescue aggregated, partially folded/misfolded states of target proteins by a thermodynamic coupling mechanism when the free energy of binding to SecB is greater than the stability of the aggregate. Pyrene excimer fluorescence and ESR methods have been used to gain insights on the bound state conformation of the B-chain to chaperone SecB. The data suggests that the B-chain is bound to SecB in a flexible extended state in a hydrophobic cleft on SecB and that the binding site accommodates approximately 10 residues of substrate.  相似文献   

6.
SecB is a bacterial chaperone involved in directing pre-protein to the translocation pathway by its specific interaction with the peripheral membrane ATPase SecA. The SecB-binding site on SecA is located at its C terminus and consists of a stretch of highly conserved residues. The crystal structure of SecB in complex with the C-terminal 27 amino acids of SecA from Haemophilus influenzae shows that the SecA peptide is structured as a CCCH zinc-binding motif. One SecB tetramer is bound by two SecA peptides, and the interface involves primarily salt bridges and hydrogen bonding interactions. The structure explains the importance of the zinc-binding motif and conserved residues at the C terminus of SecA in its high-affinity binding with SecB. It also suggests a model of SecB-SecA interaction and its implication for the mechanism of pre-protein transfer in bacterial protein translocation.  相似文献   

7.
SecB, a molecular chaperone involved in protein export in Escherichia coli, displays the remarkable ability to selectively bind many different polypeptide ligands whose only common feature is that of being nonnative. The selectivity is explained in part by a kinetic partitioning between the folding of a polypeptide and its association with SecB. SecB has no affinity for native, stably folded polypeptides but interacts tightly with polypeptides that are nonnative. In order to better understand the nature of the binding, we have examined the interaction of SecB with intermediates along the folding pathway of maltose-binding protein. Taking advantage of forms of maltose-binding protein that are altered in their folding properties, we show that the first intermediate in folding, represented by the collapsed state, binds to SecB, and that the polypeptide remains active as a ligand until it crosses the final energy barrier to attain the native state.  相似文献   

8.
SecB is a chaperone in Escherichia coli dedicated to export of proteins from the cytoplasm to the periplasm and outer membrane. It functions to bind and deliver precursors of exported proteins to the translocation apparatus before they fold into their native structures, thus maintaining them in a competent state for translocation across the membrane. The natural ligands of SecB are precursor proteins containing leader sequences. There are numerous reports in the literature indicating that SecB does not specifically recognize the leader peptides. However, two published investigations have concluded that the leader peptide is the recognition element (Watanabe M, Blobel G. 1989. Cell 58:685-705; Watanabe M, Blobel G. 1995. Proc Natl Acad Sci USA 92:10133-10136). In this work we use titration calorimetry to show that SecB binds two physiological ligands, which contain leader sequences, with no higher affinity than the same molecules lacking their leader sequences. Indeed, for one ligand the presence of the leader sequence reduces the affinity. Therefore, it can be concluded that the leader sequence provides no positive contribution to the binding energy.  相似文献   

9.
Kim J  Miller A  Wang L  Müller JP  Kendall DA 《Biochemistry》2001,40(12):3674-3680
In Escherichia coli, SecA is a critical component of the protein transport machinery which powers the translocation process by hydrolyzing ATP and recognizing signal peptides which are the earmark of secretory proteins. In contrast, SecB is utilized by only a subset of preproteins to prevent their premature folding and chaperone them to membrane-bound SecA. Using purified components and synthetic signal peptides, we have studied the interaction of SecB with SecA and with SecA-signal peptide complexes in vitro. Using a chemical cross-linking approach, we find that the formation of SecA-SecB complexes is accompanied by a decrease in the level of cross-linking of SecA dimers, suggesting that SecB induces a conformational change in SecA. Furthermore, functional signal peptides, but not dysfunctional ones, promote the formation of SecA-SecB complexes. SecB is also shown to directly enhance the ATPase activity of SecA in a concentration-dependent and saturable manner. To determine the biological consequence of this finding, the influence of SecB on the signal peptide-stimulated SecA/lipid ATPase was studied using synthetic peptides of varying hydrophobicity. Interestingly, the presence of SecB can sufficiently boost the response of signal peptides with moderate hydrophobicity such that it is comparable to the activity generated by a more hydrophobic peptide in the absence of SecB. The results suggest that SecB directly enhances the activity of SecA and provide a biochemical basis for the enhanced transport efficiency of preproteins in the presence of SecB in vivo.  相似文献   

10.
The CsaA protein was first characterized in Bacillus subtilis as a molecular chaperone with export-related activities. Here we report the 2.0 Angstrom-resolution crystal structure of the Thermus thermophilus CsaA protein, designated ttCsaA. Atomic structure and experiments in solution revealed a homodimer as the functional unit. The structure of the ttCsaA monomer is reminiscent of the well known oligonucleotide-binding fold, with the addition of extensions at the N- and C-termini that form an extensive dimer interface. The two identical, large, hydrophobic cavities on the protein surface are likely to constitute the substrate binding sites. The CsaA proteins share essential sequence similarity with the tRNA-binding protein Trbp111. Structure-based sequence analysis suggests a close structural resemblance between these proteins, which may extend to the architecture of the binding sites at the atomic level. These results raise the intriguing possibility that CsaA proteins possess a second, tRNA-binding activity in addition to their export-related function.  相似文献   

11.
Translocation, processing and secretion of YvaY, a Bacillus subtilis protein of unknown function, were characterised both in B. subtilis and in Escherichia coli. In its natural host B. subtilis, YvaY was transiently synthesised at the end of the exponential growth phase. It was efficiently secreted into the culture supernatant in spite of a calculated membrane spanning domain in the mature part of the protein. In E. coli, despite the high conservation of Sec-dependent transport components, processing of preYvaY was strongly impaired. To uncover which elements of E. coli and B. subtilis translocation systems are responsible for the observed substrate specificity, components of the B. subtilis Sec-system were co-expressed besides yvaY in E. coli. Expression of B. subtilis secA or secYEG genes did not affect processing, but expression of B. subtilis signal peptidase genes significantly enhanced processing of preYvaY in E. coli. While the major signal peptidases SipS or SipT had a strong stimulatory effect on preYvaY processing, the minor signal peptidases SipU, SipV or SipW had a far less stimulatory effect in E. coli. These results reveal that targeting and translocation of preYvaY is mediated by the E. coli Sec proteins but processing of preYvaY is not performed by E. coli signal peptidase LepB. Thus, differences in substrate specificities of E. coli LepB and the B. subtilis Sip proteins provide the bottleneck for export of YvaY in E. coli. Significant slower processing of preYvaY in absence of SecB indicated that SecB mediates targeting of the B. subtilis precursor.  相似文献   

12.
The cytoplasmic step of posttranslational secretion in Escherichia coli is catalyzed by export-specific chaperone SecB and translocational ATPase SecA. In addition, the efficiency of secretion depends on the charge of the signal peptide (SP). Replacement of positively charged Lys(–20) with uncharged Ala or negatively charged Glu in the N-terminal region of SP of the alkaline phosphatase precursor (prePhoA) was shown to decrease the PhoA secretion in the periplasm. The effect on secretion increased in the absence of SecB and was especially high on SecA inactivation. A change in SP charge strengthened the SecA and SecB dependences of secretion. On evidence of immunoprecipitation, the charge of the N-terminal region of SP had no effect on prePhoA interaction with the cytoplasmic secretion factors, suggesting no direct binding between this region and SecA or SecB. Yet the charge of the N-terminal region proved to affect the functions of SP as an intramolecular chaperone and a factor of prePhoA targeting to the membrane in cooperation with SecA and SecB.  相似文献   

13.
In Escherichia coli , precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo , are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (Δ8proOmpA) bearing a non-functional signal sequence. Δ8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prlA4 strain. SecB reduces the translocation of Δ8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB–SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.  相似文献   

14.
An early step in the export of maltose-binding protein to the periplasm is interaction with the molecular chaperone SecB. We demonstrate that binding to SecB in vivo is determined by a kinetic partitioning between the folding of maltose-binding protein to its native state and its association with SecB. A complex of SecB and a species of maltose-binding protein that folds slowly is shown to be longer-lived than a complex of the wild-type maltose-binding protein and SecB. In addition, we show that incomplete nascent chains, which are unable to fold, remain complexed with SecB.  相似文献   

15.
Preuss M  Miller AD 《FEBS letters》2000,466(1):75-79
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.  相似文献   

16.
The cytoplasmic step of posttranslational secretion in Escherichia coli is catalyzed by export-specific chaperone SecB and translocational ATPase SecA. In addition, the efficiency of secretion depends on the charge of the signal peptide (SP). Substitution of positively charged Lys(-20) with noncharged Ala or negatively charged Glu in the N-terminal region of SP of the alkaline phosphatase (PhoA) precursor (prePhoA) was shown to decrease the PhoA secretion in the periplasm. The effect on secretion increased in the absence of SecB and was especially high on SecA inactivation. A change in SP charge strengthened the SecA and SecB dependences of secretion. On evidence of immunoprecipitation, the charge of the N-terminal region of SP had no effect on prePhoA interaction with the cytoplasmic secretion factors, suggesting no direct binding between this region and SecA or SecB. Yet the charge of the N-terminal region proved to affect the functions of SP as an intramolecular chaperone and a factor of prePhoA targeting to the membrane in cooperation with SecA and SecB.  相似文献   

17.
The export of many E. coli proteins such as proOmpA requires the cytosolic chaperone SecB and the membrane-bound preprotein translocase. Translocase is a multisubunit enzyme with the SecA protein as its peripheral membrane domain and the SecY/E protein as its integral domain. SecB, by binding to proOmpA in the cytosol, prevents its aggregation or association with membranes at nonproductive sites. The SecA receptor binds the proOmpA-SecB complex (Kd approximately 6 x 10(-8) M) through direct recognition of both the SecB (Kd approximately 2 x 10(-7) M) as well as the leader and mature domains of the precursor protein. SecB has a dual function in stabilizing the precursor and in passing it on to membrane-bound SecA, the next step in the pathway. SecA itself is bound to the membrane by its affinity (Kd approximately 4 x 10(-8) M) for SecY/E and for acidic lipids. The functions of SecB and SecA as a two-stage receptor system are linked by their affinity for each other.  相似文献   

18.
SecB, a small tetrameric chaperone in Escherichia coli, facilitates export of precursor polypeptides from the cytoplasm to the periplasmic space. During this process, SecB displays two modes of binding. As a chaperone, it binds promiscuously to precursors to maintain them in a non-native conformation. SecB also demonstrates specific recognition of, and binding to, SecA. SecB with the precursor tightly bound enters an export-active complex with SecA and must pass the ligand to SecA at the translocon in the membrane. Here we use variants of SecA and SecB to further probe these interactions. We show that, unexpectedly, the binding between the two symmetric molecules is asymmetric and that the C-terminal alpha-helices of SecB bind in the interfacial region of the SecA dimer. We suggest that disruption of this interface by SecB facilitates conformational changes of SecA that are crucial to the transfer of the precursor from SecB to SecA.  相似文献   

19.
Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane‐embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N‐terminal residues 2 through 11 of SecA and the C‐terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.  相似文献   

20.
The general secretory, Sec, system translocates precursor polypeptides from the cytosol across the cytoplasmic membrane in Escherichia coli. SecB, a small cytosolic chaperone, captures the precursor polypeptides before they fold and delivers them to the membrane translocon through interactions with SecA. Both SecB and SecA display twofold symmetry and yet the complex between the two is stabilized by contacts that are distributed asymmetrically. Two distinct regions of interaction have been defined previously and here we identify a third. Calorimetric studies of complexes stabilized by different subsets of these interactions were carried out to determine the binding affinities and the thermodynamic parameters that underlie them. We show here that there is no change in affinity when either one of two contact areas out of the three is lacking. This fact and the asymmetry of the binding contacts may be important to the function of the complex in protein export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号