首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but ~40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to ~2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.  相似文献   

2.
3.
Signals of translation initiation of operons of Haemophilus influenzae ribosomal proteins were predicted. This process is regulated by the formation of secondary RNA structures to which one of the proteins encoded in a particular operon binds. In some cases, these structures imitate the region of protein binding to rRNA. Predictions are made by comparing with homologous operons of Escherichia coli and analogous regions of rRNA and by estimating the energy of secondary structure formation. It is shown that this regulatory mechanism occurs: in operons L11, S10, S15, spc, and alpha of H.influenzae and, probably, in operon S15 of Helicobacter pylori, Bacillus subtilis, and Mycoplasma genitalium.  相似文献   

4.
5.
Prediction of operons in microbial genomes   总被引:28,自引:7,他引:21       下载免费PDF全文
  相似文献   

6.
Characterization of Paenibacillus popilliae rRNA operons   总被引:1,自引:0,他引:1  
The terminal 39 nucleotides on the 3' end of the 16S rRNA gene, along with the complete DNA sequences of the 5S rRNA, 23S rRNA, tRNA(Ile), and tRNA(Ala) genes were determined for Paenibacillus popilliae using strains NRRL B-2309 and Dutky 1. Southern hybridization analysis with a 16S rDNA hybridization probe and restriction-digested genomic DNA demonstrated 8 copies of the 16S rRNA gene in P. popilliae strains KLN 3 and Dutky 1. Additionally, the 23S rRNA gene in P. popilliae strains NRRL B-2309, KLN 3, and Dutky 1 was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to occur as 8 copies. It was concluded that these 3 P. popilliae strains contained 8 rrn operons. The 8 operon copies were preferentially located on approximately one-half of the chromosome and were organized into 3 different patterns of genes, as follows: 16S-23S-5S, 16S-ala-23S-5S, and 16S-5S-ile-ala-23S-5S. This is the first report to identify a 5S rRNA gene between the 16S and 23S rRNA genes of a bacterial rrn operon. Comparative analysis of the nucleotides on the 3' end of the 16S rRNA gene suggests that translation of P. popilliae mRNA may occur in Bacillus subtilis and Escherichia coli.  相似文献   

7.
8.
Instability of rRNA operons in Bacillus subtilis.   总被引:12,自引:7,他引:5       下载免费PDF全文
Many laboratory strains of Bacillus subtilis contain 9 rather than 10 rRNA operons due to deletions occurring within the rrnJ-rrnW or rrnI-rrnH-rrnG gene cluster. These operons are members of two sets of closely spaced clusters located in the cysA-aroI region. Analysis of rescued DNA from integrants with insertions into rrnG and rrnH indicated that these tandemly arranged operons allowed frequent deletions of an rrn operon equivalent. These events may arise spontaneously by intrachromosomal recombination or by simultaneous double crossovers with a multimeric integrative plasmid.  相似文献   

9.
Oligonucleotide catalogues from 16S rRNA have been a major source of information for phylogenetic reconstruction among procaryotes. Several large procaryote groups have been analyzed and phylogenies presented. Catalogues are also available for many chloroplasts. The hypotheses of phylogeny are derived mainly from similarity (phenetic) comparisons of the catalogues and the extent of the homoplasy (parallelisms and reversals) involved has not been estimated properly. Although catalogues are currently being superseded by complete sequence data, an evaluation of the strength of catalogue data, and hence of the strength of the extensive phylogenetic hypotheses derived from them, is in order. Cladistic analysis of 16S rRNA oligonucleotide catalogues from three blue-green procaryotes, Prochloron, and chloroplasts of a red alga, Euglena, a green alga and two flowering plants shows that there is extensive homoplasy in the catalogues and several phylogenetic trees are possible. The corresponding consensus trees indicate that little or nothing can be said about interrelationships and chloroplast origin on the basis of these particular catalogues, except that Prochloron may be more closely related to the blue-greens than to chloroplasts.  相似文献   

10.
A mutant strain of Escherichia coli was created by inserting a cassette encoding sucrose sensitivity and neomycin resistance (sacB-neo) into the small-subunit rRNA-encoding gene rrs in the rrnB operon. During growth in a complex medium, the cassette was lost from the population, and a complete rrs gene was restored at a rate of 5 x 10(-9) per cell division. Repair of this lesion required flanking regions of DNA that were similar to the six remaining intact rRNA operons and reestablished the full complement of seven rRNA operons. The relative fitness of strains with restored rrnB operons was 1 to 2% higher than that of the mutant strain. The rrnB operon normally contains a spacer region between the 16S and 23S rRNA-encoding genes that is similar in length and tRNA gene content to the spacer in rrnC, -E, and -G. In 2 of the 14 strains in which rrnB was restored, the spacer region had the same length as the spacer region in rrnA, -D, and -H. The requirement for flanking regions of nearly identical DNA and the replication of the spacer region from other rRNA operons during the repair of rrnB suggest that the restoration was accomplished via gene conversion. The rate of gene conversion was 10-fold less than the fixation of point mutations in the same region of the chromosome but was apparently sufficient to homogenize the sequences of rRNA genes in E. coli. These findings are discussed in the context of a conceptual model describing the presence of sequence heterogeneity in coevolving rRNA genes.  相似文献   

11.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNA(Ile) genes between the 16S and 23S rDNAs, and the other had a tRNA(Ile) genes between the 16S and 23S rDNAs and a tRNA(Asn) gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

12.
Abstract Ribosornal RNA operon organisation was analysed in two Bacillus cereus strains of different chromosome size, ATCC 10987 (5.4 Mb) and F0837/76 (2.4 Mb). We estimated that there were twelve and nine copies of the rRNA operons in these two strains, respectively. In B. cereus ATCC 10987 six rRNA operons were less than 10 kb apart, while in B. cereus F0837/76 four rRNA operons were similarly clustered. The origin of replication was located in the vicinity of a rRNA operon in both strains.  相似文献   

13.
14.
The organization of rRNA genes from the autotrophic, acidophilic bacterium Thiobacillus ferrooxidans has been examined. Two rRNA operons were found in this microorganism by means of genomic hybridization studies. Recombinant plasmids, pTR-3 and pTR-1 that carry a portion of 16/23 S rDNA from one operon and the 5'-flanking region of the second operon, respectively, were identified and characterized.  相似文献   

15.
P Gottlieb  G LaFauci  R Rudner 《Gene》1985,33(3):259-268
Deletions and additions of rRNA gene sets in Bacillus subtilis were observed by Southern hybridizations using cloned radiolabeled rDNA sequences. Of the ten rRNA gene sets found in B. subtilis 168M or NCTC3610, one was deleted in strains possessing the leuB1, ilvC1, argA2 and pheA1 mutations. Among EcoRI restriction fragments of genomic DNA products, a 2.9-kb 23S rRNA homolog was missing. In HindIII digest, both 5.5- and 5.1-kb hybrid bands were lost with 16S and 23S probes, respectively. Similarly, genomic DNAs digested with SmaI showed the absence of both 2.1- and 2.0-kb fragments that hybridized to 16S and 5S sequences, respectively, in wild-type genomes. In contrast, B. subtilis strain 166 and its derivatives displayed a gain of a 3.3-kb HindIII fragment homologous to 16S rRNA. Transforming the ilvC1 and leuB1 mutations into new genetic backgrounds revealed in some clones the concomitant introduction of the ribosomal defect. Transformations with the slightly heterologous donor DNA from strain W23 yielded some Leu+ and Arg+ transformants with altered hybridization patterns when probed with cloned sequences. We propose that the deletion of the rRNA operon occurred in the ilv-leu gene cluster of the B. subtilis genome as a result of unequal recombination between redundant sequences.  相似文献   

16.
17.
The genome sequence of a strain of Vibrio parahaemolyticus holds 11 copies of rRNA operons (rrn) with identical 16S rRNA genes (rrs). Conversely, the species type strain contains two rrs classes differing in 10 nucleotide sites within a short segment of 25 bp. Furthermore, we show here that the sequence of this particular segment largely differs between some strains of this species. We also show that of the eleven rrn operons in the species type strain, seven contain one rrs class and four the other, indicating gene conversion. Our results support the hypothesis that the rrs differences observed between strains of this species were caused by lateral transfer of an rrs segment and subsequent conversion.  相似文献   

18.
【目的】识别原核生物全基因组中的16S rRNA基因。【方法】本文依据基因序列的GC碱基含量、碱基3-周期性和马尔可夫链3个方面的特性,构建了识别原核生物全基因组中16S rRNA基因的三层过滤模型。【结果】经检验,模型的特异性、敏感性和马修斯相关系数分别为99.58%、91.60%和91.49%。【结论】结果表明,本文所提出的方法可以高效、准确地识别出16S rRNA基因。  相似文献   

19.
Lack of polymorphism within the rRNA operons of group A streptococci   总被引:4,自引:0,他引:4  
Polymerase chain reaction (PCR) ribotyping of many bacterial species has shown that polymorphism of the ribosomal RNA (rRNA) operons, within and between strains, is common. Restriction fragment length polymorphism (RFLP) analysis of the rRNA operons of thirty-two genetically and geographically distinct strains of group A streptococci (GAS) revealed that there are only two major HaeIII PCR-ribotypes. This variation is due to a single nucleotide change within the 16S–23S intergenic spacer regions of these operons. As in many other bacterial species, this spacer region in streptococci also contains the gene for tRNAala. Within each GAS isolate, hybridization results are consistent with the presence of six rRNA operons. Interestingly, for a given strain, irrespective of its origin, all six rRNA operons have the same RFLP pattern. This contrasts with the findings in many other bacterial species, where heterogeneity of the rRNA operons within a genome is a common feature. This lack of heterogeneity of rRNA operons in an organism that is known to acquire genetic sequences through horizontal transfer is intriguing. Received: 22 November 1996 / Accepted: 30 January 1997  相似文献   

20.
The rRNA operons of Salmonella typhimurium have been characterized with respect to their map position, orientation, and type of tRNA spacer. One of the seven rrn operons was found to be linked to pheA and another was found to be linked to aroE. This information, together with published information about the other five rrn operons, shows that S. typhimurium and Escherichia coli are essentially identical in terms of the number, the map position, and the orientation of all seven operons. S. typhimurium and E. coli were also similar in that four of the rrn spacer regions code for tRNAGlu2 and three code for tRNAAla1B. However, the two species differed in that rrnD coded for tRNAGlu2 and rrnB coded for tRNAAla1B in S. typhimurium. This is the opposite of the arrangement in E. coli. We have tabulated the coordinates of the BamHI and PstI sites flanking six of the S. typhimurium rrn genes and present revisions for the coordinates of some of the E. coli sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号