首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rp- and Sp-diastereomers of the phosphorothioate-containing oligonucleotide d[ApAp(S)ApA] have been synthesized. They and the tetramer d[ApApApA] were tested as substrates for staphylococcal nuclease, DNase II and spleen phosphodiesterase. For digestions with DNase I these oligonucleotides were converted to the 5'-phosphorylated derivates. The reactions with the nucleases were analysed by HPLC. The phosphorothioate groups of both diastereomers were resistant to the action of staphylococcal nuclease, DNase I and DNase II. While the phosphorothioate group of the Rp-diastereomer was resistant to the action of spleen phosphodiesterase, the Sp-diastereomer was hydrolysed at an estimated rate 1/100 the rate of cleavage of the unmodified tetramer. The presence of the phosphorothioate group in the center of the molecule affected the rate of hydrolysis of neighbouring phosphate groups for some enzymes. In particular, very slow release of 3'-dAMP from the Rp-diastereomer occurred on incubation with staphylococcal nuclease but the Sp-diastereomer was completely resistant. DNase II produced 3'-dAMP quite rapidly from both diastereomers of d[ApAp(S)ApA] and DNase I released 5'-dAMP from both diastereomers of d[pApAp(S)ApA] only slowly.  相似文献   

2.
The duplex stabilities of various phosphorothioate, methylphosphonate, RNA and 2'-OCH3 RNA analogs of two self-complementary DNA 14-mers are compared. Phosphorothioate and/or methylphosphonate analogs of the two sequences d(TAATTAATTAATTA) [D1] and d(TAGCTAATTAGCTA) [D2] differ in the number, position, or chirality (at the 5' terminal linkage) of the modified phosphates. Phosphorothioate derivatives of D1 are found to be less destabilized when the linkage modified is between adenines rather than between thymines. Surprisingly, no base sequence effect on duplex stabilization is observed for any methylphosphonate derivatives of D1 or D2. Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified counterparts which are less stable than the unmodified parent compounds. The 'normal' (2'-OH) RNA analog of duplex D1 is slightly destabilized, whereas the 2'-OCH3 RNA derivative is significantly stabilized relative to the unmodified DNA. For the D1 sequence, at approximately physiological salt concentration, the order of duplex stability is 2'-OCH3 RNA greater than unmodified DNA greater than 'normal' RNA greater than methylphosphonate DNA greater than phosphorothioate DNA. D2 and the various D2 methylphosphonate analogs investigated all formed hairpin conformations at low salt concentrations.  相似文献   

3.
More than twenty repeating sequence DNAs containing phosphorothioates were prepared from the appropriate dXTPs with DNA polymerase I. The Tms of the modified DNAs were all lower than the parent polymers. A phosphorothioate group 5' to a pyrimidine gave rise to a large decrease than 5' to a purine, e.g., poly(dA).poly(dT) = 50 degrees; poly(dsA).poly(dT) = 44 degrees; poly(dA).poly(dsT) = 33 degrees; and poly(dsA).poly(dsT) = 26 degrees. The presence of phosphorothioate groups had a dramatic effect on triplex formation; poly[d(TC)].poly[d(sGsA)] spontaneously dismutases to a triplex at pH 8 whereas triplex formation in poly[d(sTsC)].poly[d(GA)] was inhibited. Surprisingly poly(dsG).poly(dC) had a Tm which initially decreased with increasing ionic strength. Resistance to digestion with pancreatic DNAse I did not correlate with phosphorothioate content. Poly[d(AsT)], poly[d(TsC)].poly[d(sGA)] and poly[d(sTG)].poly[d(sCA)] were resistant whereas poly[d(sAT)] and poly[d(sTsTG)].poly[d(CsAsA)] were rapidly degraded. Thus phosphorothioate groups cause small conformational changes and may reveal new families of conformational polymorphisms.  相似文献   

4.
Poly d/[3H]A-r5U/ type of synthetic models of bacteriophage DNAs containing thymine analogues were prepared by DNA polymerase and tested for stability against nucleases /r was a n-alkyl group from methyl to pentyl/. The 5-pentyluracil-containing copolymer was found to be most stable: 50 % degradation with pancreatic DNase, spleen DNase, snake venom phosphodiesterase or micrococcal nuclease required 3–15 times as much time as that of poly d/A-T/.  相似文献   

5.
Syntheses of non ionic oligodeoxynucleoside phosphoramidates (P-NH2) and mixed phosphoramidate- phosphodiester oligomers were accomplished on automated solid supported DNA synthesizer using both H-phosphonate and phosphoramidite chemistries, in combination with t-butylphenoxyacetyl for N-protection of nucleoside bases, an oxalyl anchored solid support and a final treatment with methanolic ammonia. Thermal stabilities of the hybrids formed between these new analogues and their DNA and RNA complementary strands were determined and compared with those of the corresponding unmodified oligonucleotides, as well as of the phosphorothioate and methylphosphonate derivatives. Dodecathymidines containing P-NH2 links form less stable duplexes with DNA targets, d(C2A12C2) (deltaTm/modification -1.4 degrees C) and poly dA (deltaTm/modification -1.1 degrees C) than the corresponding phosphodiester and methylphosphonate analogues, but the hybrids are slightly more stable than the one obtained with phosphorothioate derivative. The destabilization is more pronounced with poly rA as the target (deltaTm/modification -3 degrees C) and could be compared with that found with the dodecathymidine methylphosphonate. The modification is less destabilizing in an heteropolymer-RNA duplex (deltaTm/modification -2 degrees C). As expected, the P-NH2 modifications are highly resistant towards the action of various nucleases. It is also demonstrated that an all P-NH2 oligothymidine does not elicit Escherichia coli RNase H hydrolysis of the poly rA target but that the modification may be exploited in chimeric oligonucleotides combining P-NH2 sections with a central phosphodiester section.  相似文献   

6.
Phenanthroline was attached covalently to the 5′-terminus of the unmodified and modified (3′-terminal phosphorothioate) oligonucleotide sequences, TTTTTTCTTCTCTTTCC (OP-17 mer) and TTTTTTTCTTCTCTTTCsC (OPRp-17 mer or OPSp-17 mer) via a phosphoramidite bond. Simian virus 40 DNA contains a single target site for these oligonucleotides. In the presence of copper ions, the efficient double-stranded cleavage at 37 °C and pH 7.0 was observed by agarose gel electrophoresis. The asymmetric distribution of the cleavage sites on the two strands revealed that the cleavage reaction took place in the minor groove, even though the linker was located in the major groove. Of particular interest are the 3′-terminal phosphorothioate oligonucleotide-phenanthroline derivatives (Rp or Sp), which were found to have cleavage activities of the same order as for the oligonucleotide phenanthroline (OP-17 mer). Furthermore, the OPSp-17 mer was intact after incubation in 10% fetal bovine serum for 24 h, whereas, the OPRp-17 mer was slightly more unstable than the OPSp-17 mer. However, the OP-17 mer was completely degraded. An increased resistance to nucleases has been observed by the introduction of phosphorothioate groups on the 3′-terminus of oligonucleotide-phenanthroline derivatives. This stabilization should help us to design much more efficient chemical recognition enzymes and antisense nucleic acid based anti-viral therapies, which could be used as tools in cellular biology.

The 3′-terminal phosphorothioate oligonucleotide-phenanthroline derivatives (Rp or Sp) were found to have cleavage activities of the same order as for the oligonucleotide phenanthroline (OP-17 mer). Furthermore, the OPSp-17 mer was intact after incubation in 10% fetal bovine serum for 24 h, whereas, the OPRp-17 mer was slightly more unstable than the OPSp-17 mer. However, the OP-17 mer was completely degraded. An increased resistance to nucleases has been observed by the introduction of phosphorothioate groups on the 3′-terminus of oligonucleotide-phenanthroline derivatives. This stabilization should help us to design much more efficient chemical recognition enzymes, which could be used as tools in cellular biology.  相似文献   


7.
P J Furdon  Z Dominski    R Kole 《Nucleic acids research》1989,17(22):9193-9204
Three types of 14-mer oligonucleotides were hybridized to human beta-globin pre-mRNA and the resultant duplexes were tested for susceptibility to cleavage by RNase H from E. coli or from HeLa cell nuclear extract. The oligonucleotides contained normal deoxynucleotides, phosphorothioate analogs alternating with normal deoxynucleotides, or one to six methylphosphonate deoxynucleosides. Duplexes formed with deoxyoligonucleotides or phosphorothioate analogs were susceptible to cleavage by RNase H from both sources, whereas a duplex formed with an oligonucleotide containing six methylphosphonate deoxynucleosides alternating with normal deoxynucleotides was resistant. Susceptibility to cleavage by RNase H increased parallel to a reduction in the number of methylphosphonate residues in the oligonucleotide. Stability of the oligonucleotides in the nuclear extract from HeLa cells was also tested. Whereas deoxyoligonucleotides were rapidly degraded, oligonucleotides containing alternating methylphosphonate residues remained unchanged after 70 minutes of incubation. Other oligonucleotides exhibited intermediate stability.  相似文献   

8.
Interactions of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin [TMpyP(4)] with poly[d(G-C)].poly[d(G-C)] [poly[d(G-C)2] and poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2] were studied by equilibrium dialysis and stopped-flow dissociation kinetics as a function of [Na+]. Metalloderivatives of TMpyP(4), NiTMpyP(4), and ZnTMpyP(4) were also investigated. The apparent equilibrium binding constants (Kobs) were approximately the same for TMpyP(4) binding to either poly[d(G-C)2] or poly[d(A-T)2] and decreased with increasing [Na+]. The slopes of the plots of log Kobs vs log [Na+] were similar, with values close to -2.7. Contrary to implications in previously reported studies, these data do not indicate that TMpyP(4) prefers to bind to GC sites at low ionic strength and to AT sites at high ionic strength. In contrast, binding of ZnTMpyP(4) to these two polymers is very different. Comparisons of Kobs values at 0.065 M [Na+] indicate that ZnTMpyP(4) binding to AT sites is approximately 200 times more favorable than binding to GC sites, a finding in agreement with previous qualitative observations. Although the binding of the Zn species to the GC polymer was too weak for us to assess the salt effect, the plot of log Kobs vs log [Na+] gave a slope of -2.0 for ZnTMpyP(4) binding to poly[d(A-T)2]. Application of condensation theory for polyelectrolytes suggests similar charge interactions for ZnTMpyP(4) and for TMpyP(4) binding to poly[d(A-T)2]. Likewise, the rates of dissociation from poly[d(A-T)2] were similar for TMpyP(4) and ZnTMpyP(4) [and also NiTMpyP(4)]. However, whereas TMpyP(4) [and NiTMpyP(4)] dissociation from poly[d(G-C)2] was measurable, that for ZnTMpyP(4) was too fast to measure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register.  相似文献   

10.
Nucleosides and oligonucleotides with an oxygen replaced by sulfur atom are an interesting class of compounds because of their improved stability toward enzymatic cleavage by nucleases. We have synthesized several dinucleotide mRNA cap analogs containing a phosphorothioate moiety in the alpha, beta, or gamma position of 5',5'-triphosphate chain [m7Gp(s)ppG, m7Gpp(s)pG, and m7Gppp(s)G]. These are the first examples of the biologically important 5'mRNA cap analogs containing a phosphorothioate moiety, and these compounds may be useful in a variety of biochemical and biotechnological applications. Incorporation of a sulfur atom in the alpha or gamma position within the dinucleotide cap analog was achieved using PSCl3 in a nucleoside phosphorylation reaction followed by coupling the phosphorothioate of nucleoside with a second nucleotide. Synthesis of cap analogs with the phosphorothioate moiety in beta position was performed using an organic phosphorothioate salt in a coupling reaction with an activated nucleotide. The structures of newly synthesized compounds was confirmed using MS and 1H and 31P NMR spectroscopy. We present here the results of preliminary studies on their interaction with translation initiation factor eIF4E and enzymatic hydrolysis with human and nematode DcpS scavengers.  相似文献   

11.
12.
Guo L  Li J  Brown Z  Ghale K  Zhang D 《Biopolymers》2011,96(5):596-603
Cyclic poly(alpha-peptoid)s [a.k.a. poly(N-R-glycine)] with chiral aromatic side-chains [R = (R)- or (S)-CHMePh] have been synthesized by N-heterocyclic carbene-mediated ring-opening polymerization of N-substituted N-carboxyanhydrides (N(R-NCA)). Their linear analogs have been prepared by primary amine-initiated polymerization of the corresponding N(R-NCA). Poly[(R)/(S)-N-CHMePh-glycine] with polymer molecular weights (MWs) in the range of 4-15 kg mol(-1) and low MW distribution (Polydispersity index (PDI) < 1.15) can be readily accessed by these methods. Their high MW analogs were not obtained due to the competitive formation of cyclic oligomeric species that result from intramolecular transamidation. Intrinsic viscosity measurements confirm the architectural difference between the polymers prepared by the two methods and reveals that both cyclic and linear poly[(S)-N-CHMePh-glycine]s behave as random-coil polymers in 0.1M LiBr/Dimethylformamide (DMF) solution. Circular dichroism analysis suggests that the cyclic and linear poly(alpha-peptoid)s retain polyproline I helix conformations, analogously to previously reported linear oligomers. Differential scanning calorimetry analysis reveals that cyclic and linear poly[(S)-N-CHMePh-glycine] are both amorphous with the glass transition temperature of the cyclic polymers (T(g) = 122 degrees C) being notably higher than that of the linear analogs (T(g) = 112 degrees C) with identical MW. These results are consistent with the absence of chain ends, causing the polymers to have reduced segmental mobilities.  相似文献   

13.
A group of at least four distinct nucleases designated DcI through DcIV were isolated from cellular extracts of group A streptococcal strain S43 and shown to be antigenically similar to streptococcal extracellular deoxyribonuclease (DNase) D. These cellular endonucleases degraded single- and double-stranded deoxyribonucleic acid (DNA) as well as ribonucleic acid (RNA) to acid-soluble oligonucleotides. The products of digestion of DNA bore 5'-terminal phosphates, and in partial digests pdX-pdG linkages were most susceptible and pdA-pdX linkages were most resistant to nuclease action. The enzymes had pH optima of 8.0 to 8.5, were inhibited by NaCl, were unaffected by sulfhydryl modifying reagents, and absolutely required a divalent cation. Nucleases DcIII and DcIV were apparently hydrophobic in nature since they required the presence of detergents for migration on nondenaturing polyacrylamide gels. All four nucleases were electrophoretically distinct on such gels, from each other, and from DNase D. Molecular weights of DcI and DcII were similar to that of DNase D, suggesting that the mobility differences of these enzymes at least are reflections of differing net charges. It is suggested that the cellular nucleases represent a group of processing intermediates in the maturation and excretion of DNase D.  相似文献   

14.
Reactivity of B and Z-DNA towards N-acetoxy-2-acetylaminofluorene.   总被引:4,自引:4,他引:0       下载免费PDF全文
Poly d(G-C) d(G-C) in B-form, on one hand, and poly d(G-br5C). poly d(G-br5C) and poly d(G-m5C) . poly d(G-m5C) in Z-form, on another hand, were treated with N-AcO-[3H]AAF and the kinetics of these reactions were followed by radioactivity. Covalent binding of carcinogen to the polymers was evaluated after separation of the reacted polymers from non-reacted carcinogen by thin-layer chromatography. We found that B-form polymer reacts twice faster than the Z-form polymers. Proportions of main adducts in the three polymers are almost the same. Results are discussed in relation to the calculated electrostatic potential minima and steric accessibility at the reactive site (1, 2).  相似文献   

15.
Although most duplex DNAs are not immunogenic some synthetic DNAs such as poly[d(Tm5C)].poly[d(GA)] are weakly immunogenic allowing the production of monoclonal antibodies. The specificity of one of these antibodies, Jel 172, was investigated in detail by a competitive solid-phase radioimmune assay. Jel 172 bound well to poly[d(TC)].poly[d(GA)] but not to other duplex DNAs such as poly[d(TTC)].poly[d(GAA)] and poly[d(TCC)].poly[d(GGA)]. The binding to poly[d(Br5UC)].poly[d(GA)] was enhanced while that to poly[d(TC)].poly[d(IA)] was decreased compared to poly[d(TC)].poly[D(GA)]. Thus, not only is the antibody very specific for a sequence of duplex DNA but it also appears to recognize functional groups in both grooves of the helix.  相似文献   

16.
We have employed a variety of physical methods to study the equilibrium melting and temperature-dependent conformational dynamics of dA.dT tracts in fractionated synthetic DNA polymers and in well-defined fragments of kinetoplast DNA (kDNA). Using circular dichroism (CD), we have detected a temperature-dependent, "premelting" event in poly(dA).poly(dT) which exhibits a midpoint near 37 degrees C. Significantly, we also detect this CD "premelting" behavior in a fragment of kDNA. By contrast, we do not observe this "premelting" behavior in the temperature-dependent CD spectra of poly[d(AT)].poly[d(AT)], poly(dG).poly(dC), poly[d(GC)].poly[d(GC)], or calf thymus DNA. Thus, poly(dA).poly(dT) and kDNA exhibit a common CD-detected "premelting" event which is absent in the other duplex systems studied in this work. Furthermore, we find that the anomalous electrophoretic retardation of the kDNA fragments we have investigated disappears at temperatures above approximately 37 degrees C. We also observe that the rotational dynamics of poly(dA).poly(dT) and kDNA as assessed by singlet depletion anisotropy decay (SDAD) and electric birefringence decay (EBD) also display a discontinuity near 37 degrees C, which is not observed for the other duplex systems studied. Thus, in the aggregate, our static and dynamic measurements suggest that the homo dA.dT sequence element [common to both poly(dA).poly(dT) and kDNA] is capable of a temperature-dependent equilibrium between at least two helical states in a temperature range well below that required to induce global melting of the host duplex. We suggest that this "preglobal" melting event may correspond to the thermally induced "disruption" of "bent" DNA.  相似文献   

17.
Factors influencing the binding of tetracationic porphyrin derivatives to DNA have been comprehensively evaluated by equilibrium dialysis, stopped-flow kinetics, etc., for mesotetrakis (4-N-methylpyridiniumyl)porphyrin [TMpyP (4)]. Technical difficulties have previously precluded a comprehensive study of metalloporphyrins. Since electrostatic interactions with the DNA and metal derivatization of the porphyrins have important consequences, we have investigated in greater detail two isomers of TMpyP (4) (meso-tetrakis(3-N-methylpyridiniumyl)porphyrin, [TMpyP (3)] and meso-tetrakis(2-N-methylpyridiniumyl)porphyrin [TMpyP (2)]) in which the position of the charged centers has been varied. A comprehensive study of the Cu(II) derivatives, e.g., CuTMpyP (4), was possible since the difficulties encountered previously with Ni(II) compounds were not a problem with Cu(II) porphyrins [J. A. Strickland, L. G. Marzilli, M. K. Gay, and W. D. Wilson (1988) Biochemistry 27, 8870-8878]. At 25 degrees C, the apparent equilibrium constants [Kobs] decreased with increasing [Na+] for all porphyrins. The Kobs values were comparable for TMpyP (4) and TMpyP (3) binding to either polyd(G-C).polyd(G-C) [poly[d(G-C)2]] or poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]]. For the copper(II) porphyrins, the Kobs values were about fivefold greater. The Kobs value for CuTMpyP (2) binding to poly[d(G-C)2] was too small to measure under typical salt conditions; however, Kobs for binding to poly[d(A-T)2] was about two orders of magnitude smaller than those found for CuTMpyP (4) or CuTMpyP (3). Application of the condensation theory for polyelectrolytes suggests about three charge interactions when CuTMpyP (4), CuTMpyP (3), and TMpyP (3) bind to poly[d(G-C)2] or poly[d(A-T)2], a result comparable to that reported for TMpyP (4). At 20 degrees C and 0.115 M [Na+], incorporation of copper decreased the rates of dissociation from poly[d(A-T)2] by a 100-fold compared to those reported for TMpyP (4) but had little effect on the rates of dissociation from poly[d(G-C)2]. Also, movement of the H3CN+ group from the fourth to the third position of the pyridinium ring enhanced the rates of dissociation from poly[d(A-T)2] but decreased the rates of dissociation from poly[d(G-C)2]. From polyelectrolyte theory, the [Na+] dependence of the dissociation rates from poly[d(G-C)2] is consistent with intercalative binding, while that for poly[d(A-T)2] is consistent with an outside binding model. For calf thymus [CT] DNA at 20 degrees C, a greater decrease in the AT than in the GC imino 1H-nmr signal was observed upon addition of CuTMpyP (2), suggesting selective outside binding to the AT regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Propidium iodide is used as a structural probe for alternating and non-alternating DNA polymers containing guanine and the results are compared to experiments with poly[d(A-T)2], poly(dA . dT) and random DNA sequences. Viscometric titrations indicate that propidium binds to all polymers and to DNA by intercalation. The binding constant and binding site size are quite similar for all alternating polymers, non-alternating polymers containing guanine and natural DNA. Poly(dA . dT) is unusual with a lower binding constant and positive cooperativity in its propidium binding isotherms. Poly(dA . dT) and poly(dG . dC) have similar salt effects but quite different temperature effects in propidium binding equilibria. Polymers and natural DNA have similar rate constants in their SDS driven dissociation reactions. The association rate constants are similar for the alternating polymers and poly(dG . dC) but are significantly reduced for poly(dA . dT). These results suggest that natural DNA, the alternating polymers, and non-alternating polymers containing guanine convert to an intercalated conformation with bound propidium in a very similar manner.  相似文献   

19.
The interactions of DAPI with natural DNA and synthetic polymers have been investigated by hydrodynamic, DNase I footprinting, spectroscopic, binding, and kinetic methods. Footprinting results at low ratios (compound to base pair) are similar for DAPI and distamycin. At high ratios, however, GC regions are blocked from enzyme cleavage by DAPI but not by distamycin. Both poly[d(G-C)]2 and poly[d(A-T)]2 induce hypochromism and shifts of the DAPI absorption band to longer wavelengths, but the effects are larger with the GC polymer. NMR shifts of DAPI protons in the presence of excess AT and GC polymers are significantly different, upfield for GC and mixed small shifts for AT. The dissociation rate constants and effects of salt concentration on the rate constants are also quite different for the AT and the GC polymer complexes. The DAPI dissociation rate constant is larger with the GC polymer but is less sensitive to changes in salt concentration than with the AT complex. Binding of DAPI to the GC polymer and to poly[d(A-C)].poly[d(G-T)] exhibits slight negative cooperativity, characteristic of a neighbor-exclusion binding mode. DAPI binding to the AT polymer is unusually strong and exhibits significant positive cooperativity. DAPI has very different effects on the bleomycin-catalyzed cleavage of the AT and GC polymers, a strong inhibition with the AT polymer but enhanced cleavage with the GC polymer. All of these results are consistent with two totally different DNA binding modes for DAPI in regions containing consecutive AT base pairs versus regions containing GC or mixed GC and AT base pair sequences. The binding mode at AT sites has characteristics which are similar to those of the distamycin-AT complex, and all results are consistent with a cooperative, very strong minor groove binding mode. In GC and mixed-sequence regions the results are very similar to those observed with classical intercalators such as ethidium and indicate that DAPI intercalates in DNA sequences which do not contain at least three consecutive AT base pairs.  相似文献   

20.
Nucleosides and oligonucleotides with an oxygen replaced by sulfur atom are an interesting class of compounds because of their improved stability toward enzymatic cleavage by nucleases. We have synthesized several dinucleotide mRNA cap analogs containing a phosphorothioate moiety in the α, β, or γ position of 5′,5′-triphosphate chain [m7Gp(s)ppG, m7Gpp(s)pG, and m7Gppp(s)G]. These are the first examples of the biologically important 5′mRNA cap analogs containing a phosphorothioate moiety, and these compounds may be useful in a variety of biochemical and biotechnological applications. Incorporation of a sulfur atom in the α or γ position within the dinucleotide cap analog was achieved using PSCl3 in a nucleoside phosphorylation reaction followed by coupling the phosphorothioate of nucleoside with a second nucleotide. Synthesis of cap analogs with the phosphorothioate moiety in β position was performed using an organic phosphorothioate salt in a coupling reaction with an activated nucleotide. The structures of newly synthesized compounds was confirmed using MS and 1H and 31P NMR spectroscopy. We present here the results of preliminary studies on their interaction with translation initiation factor eIF4E and enzymatic hydrolysis with human and nematode DcpS scavengers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号