首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
—An in vitro system using mouse brain homogenates has been developed to study the synthesis of the myelin basic proteins. Incorporation of [3H]leucine into protein in this system did not require additional energy sources. The system was slightly stimulated by glucose and strongly inhibited by puromycin. Myelin basic proteins were isolated from incubation mixtures by conventional techniques of solvent extraction and column chromatography, and finally separated into the large and small components by polyacrylamide gel electrophoresis in an acetic acid-urea system. Gels were stained, sliced, dissolved, and counted, and relative rates of incorporation of label into the two basic proteins were determined at several ages. The ratio of radioactivity incorporated into the small (S) and large (L) basic proteins, over a 30 min incubation period, was found to increase from 0.97 at 10 days to 1.59 at 21 days and decline thereafter. These data generally agree with earlier studies on the in vivo synthesis of the myelin basic proteins in mice. An interesting feature of the time course was that incorporation of [3H]leucine into the purified myelin basic proteins relative to incorporation into total protein in the homogenate increased almost 2-fold during the course of the 30-min incubation. This suggested that post-translational processing of at least one of the two basic proteins was occurring. To examine this possibility further, experiments were conducted in which incorporation was allowed to proceed for 2–5 min, before being inhibited with puromycin; the incubation was then continued for up to 25 min longer. Although total incorporation was inhibited immediately after puromycin addition, label was found to continue to accumulate in the basic proteins to the extent of 30–100% above controls. These data support the notion that the MBPs are synthesized as precursors and then processed to yield authentic myelin basic proteins and that this processing can occur in vitro.  相似文献   

2.
Incorporation of [14C]leucine into the myelin sheath was studied in brain stem slices prepared from 22-day-old rats. Individual major myelin proteins were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. There was a time lag before incorporation of the label into proteolipid protein (PLP) and intermediate protein (IP) reached maximal rates. Labelling of basic proteins (BP) and Wolfgram proteins (WP) revealed a much shorter lag in entry. Appearance of radioactive proteins in the myelin sheath was significantly hampered by triethyllead (PbEt3) added to the incubation medium at micromolar concentrations. Inhibition values were highest in the case of PLP and were closely followed by the values for IP. BP and WP were less inhibited, although incorporation of these proteins into myelin was still suppressed more than was synthesis of total homogenate protein. Thus, myelin-forming cells seem to be unduly vulnerable to the toxin relative to the rest of the tissue. Furthermore, the results indicate an interference of PbEt3 with certain posttranslational processes involved in furnishing of integral myelin proteins.  相似文献   

3.
Abstract— Following intracranial injections of puromycin, the incorporation of [3H]leucine into brain protein was inhibited by 80 per cent. Conversely, incorporation of [35S]sulphate into sulphatide or [2-3H]glycerol into phosphatidyl choline was not inhibited. Under these conditions, appearance of labelled protein in myelin was inhibited by 90 per cent, while the appearance of newly labelled sulphatide and phosphatidyl choline in myelin membrane was not greatly affected. Experiments with cycloheximide gave similar results with phosphatidyl choline, but incorporation of [35S]sulphate into total sulphatide was decreased by about 30 per cent in animals given cycloheximide. Neither puromycin nor cycloheximide had any inhibitory effect on galactocerebroside sulphotransferase.  相似文献   

4.
Brain slices were prepared from 17-day old rats, and incubated with [3H]glycine or [3H]-leucine to label proteins. Myelin was isolated from the slices, and the proteins were separated by discontinuous gel electrophoresis in buffers containing sodium dodecyl sulfate. Radioactive basic and Wolfgram proteins appeared in myelin at similar initial rates, and their entry was nearly linear between 15 and 120 min with no detectable lag. Radioactive proteolipid protein appeared in myelin at one-fourth the rate of the basic and Wolfgram proteins between 0 and 30 min, then entered at a rate comparable to the other proteins between 45 and 120 min. When cycloheximide (0.2 mM) or puromycin (1.0 mM) was added, appearance of newly labeled basic and Wolfgram proteins in myelin stopped while proteolipid protein continued to appear in myelin at a normal rate for at least 30 min. Chase experiments with unlabeled glycine had similar effects. These results indicate the existence of a previously synthesized precursor pool of proteolipid protein with a 30-min interval between synthesis of proteolipid protein and its appearance in myelin. Incorporation of [3H]fucose into glycoprotein of the myelin sheath was studied, as was inhibition of incorporation of radioactivity by the use of either cycloheximide, or dilution with unlabeled fucose. The results indicated fucosylation of a sizable pool of presynthesized protein and a delay of 30 min between fucosylation of these polypeptides and their subsequent appearance in myelin as glycoproteins.  相似文献   

5.
Abstract— Diphtheria toxin (DT) did not produce measurable degradation of myelin proteins or sulphatide in sciatic nerves of chick embryos after incubation in vitro for 4 h. In contrast, DT inhibited the in vitro incorporation of L-[U-14C]leucine into myelin proteins by the nerves after a delay of 1 h. Separation of the myelin proteins by SDS-polyacrylamide gel electrophoresis indicated that the synthesis of Wolfgram proteins and proteins not entering the gel was inhibited by 21–22 per cent, whereas synthesis of myelin proteolipid and basic proteins was inhibited by 79–88 per cent. Incorporation of 35SO4 into myelin [35S]sulphatide was also inhibited by DT after a delay of 2 h. The inhibition of [35S]sulpha-tide incorporation into myelin caused by DT differed from that observed with puromycin in that it did not depend on depletion of an intracellular transport lipoprotein. Instead, the inhibition seemed to be secondary to the decreased synthesis of myelin proteolipid and basic proteins.  相似文献   

6.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

7.
Myelin formation was inhibited in fetal mouse spinal cord cultures in the presence of serum from rabbits with experimental allergic encephalomyelitis produced by inoculation of whole bovine spinal cord white matter in complete Freund's adjuvant. Controls were exposed to decomplemented serum. Replacement of serum in inhibited cultures on the 18th day in vitro (DIV) with control serum (disinhibited) resulted in the appearance of visible myelin within 2–3 days. From 20 to 23 DIV, d -[U-14C]glucose or d -[U-14C]galactose was present in all media. Total protein, DNA, gangliosides and galactolipids were reduced by 21% in inhibited cultures, and activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase was reduced by 50%. There was little reduction in the incorporation of glucose carbon (21–23 DIV) into several lipid classes examined. Labelling of cerebrosides by galactose carbon in inhibited cultures was only 12% of that of controls while there was no reduction in the labelling of neutral lipid–cholesterol and the glycerophosphatides. Galactolipid labelling by [14C]galactose in the disinhibited cultures was intermediate between inhibited and control cultures. Differences in the effects of inhibiting medium on the incorporation of glucose and galactose carbon indicate that ceramide synthesis is less affected than is galactose incorporation to form cerebroside.  相似文献   

8.
Rats (20-day-old) were acutely intoxicated with triethyllead and their forebrains were studied during the following 14 days. All the lead in the tissue was found in the form of triethyllead, proving that the toxin per se was responsible for the pathological changes observed in the organ. The incorporation of [14C]leucine into the acid-insoluble protein was suppressed in the forebrain slices prepared from the intoxicated animals as well as in the slices, to which PbEt3 was added in vitro. In both systems the synthesis of myelin protein was inhibited more than the total protein synthesis. The results suggest a specificity of triethyllead toward processes involved in the furnishing of the myelin membrane proteins.  相似文献   

9.
—The metabolic activity of proteins from myelin and non-myelin fractions of slices of lesions in monkey brains and in spinal cords of Lewis rats with acute experimental allergic encephalomyelitis was investigated using [1-14C]leucine as a protein precursor. The uptake in vitro of [1-14C]leucine into the monkey EAE lesions was greatly increased in both the myelin and non-myelin fractions. Similar findings were made in spinal cord slices of the EAE rat with an average specific activity 341 per cent of control measured in proteins of purified myelin and 415 per cent of control in the non-myelin protein. The increased uptake appeared with the onset of paralytic symptoms 10–14 days after injection. The increased uptake did not appear to be a result of an increased amino acid pool size as measured with uniformly labelled l -leucine, valine, arginine and phenylalanine. The increase in specific activity of the myelin protein of the EAE rats was shown to be associated with the peaks characteristic of myelin protein when separated on polyacrylamide gels and the serial slices counted. Most of the radioactivity of both the control and EAE myelin protein migrated with the high molecular weight fraction, and the largest increase in radioactivity in myelin protein appeared in this fraction. Some increase in specific activity was also found in the basic and proteolipid proteins. Four different guinea-pig antigens were used to induce EAE: whole spinal cord, purified basic protein, purified myelin and basic protein + cerebroside. All caused paralytic symptoms and greatly increased incorporation in vitro of [1-14C]leucine into spinal cord proteins. The incorporation of [1-14C]leucine into slices of the inguinal and popliteal lymph nodes of the EAE and Freund's adjuvant control rats were measured and compared with the incorporation into the spinal cord non-myelin fractions. The specific activity of lymph node proteins was of the order of 10 × that of the non-myelin protein of the control spinal cord. Invasion of a moderate number of cells of the order of activity of these lymph nodes could account for the large increase in rate of protein synthesis in the EAE nervous tissue. It is concluded that much of the increased protein synthesis could be due to the inflammatory cells, although a small amount of the total increase appears to be associated with myelin protein. Other changes in metabolism of the CNS tissue of the EAE rat include a lower rate of lipid synthesis and a decreased activity of the tricarboxylic acid cycle.  相似文献   

10.
Abstract— —The synthesis of myelin proteins has been studied in the grey and white matter slices of developing rat brain by measuring the incorporation of [3H]lysine and [14C]arginine into polypeptide. The incorporation was sensitive to cycloheximide and puromycin at 1 mM concentration. Developing rat optic nerve slices, free of retinal ganglion cells, were able to synthesize myelin basic and proteolipid proteins, but rat retinal preparation failed to synthesize myelin basic protein. Rabbit retinae were able to synthesize myelin basic and proteolipid proteins. Significant activity of the myelin marker enzyme 2',3'-cyclic nucleotide-2'-phosphodiesterase has been found in the rabbit retina but not in rat retina. The results presented in this communication suggest that myelin proteins in the rat CNS are synthesized by the oligodendroglial cells and that neurons probably do not participate.  相似文献   

11.
The kinetics of the incorporation into protein of [3H]phenylalanine, [3H]tyrosine and [3H]tryptophan were studied with homogenates prepared from whole brain of 1-, 7-, 21- and 60-day-old rats. The maximal velocities (Vmax)of incorporation of phenylalanine and tyrosine decreased and the apparent Michaelis-constants (Km) for all three amino acids increased with increasing age of the rats. Tyrosine had the smallest and tryptophan the largest Km values in all age groups. Phenylalanine competitively inhibited the incorporation of tyrosine, but tyrosine inhibited non-competitively the incorporation of phenylalanine. Tryptophan inhibited competitively the incorporation of phenylalanine, but at least partially non-competitively the incorporation of tyrosine. Phenylalanine and tyrosine did not significantly affect the incorporation of tryptophan in homogenates from 60-day-old rats. In 1-day-old rats only a very large excess of phenylalanine or tyrosine inhibited detectably. The Ki for phenylalanine in the incorporation of tyrosine was significantly smaller in 1- than in 60-day-old rats. In every case the inhibition presumably occurred at a single rate-limiting step in the complicated process of incorporation of amino acids into protein.  相似文献   

12.
—Purified myelin incorporated l -[14C]leucine and l -[14C]lysine into myelin proteins in an enzymatic process similar to that of renal brush border membranes. The system was not inhibited by cycloheximide or puromycin or by pretreatment with ribonuclease; the reaction was inhibited by cetophenicol. ATP was an effector, shifting the optimal pH from 7.2 to 8.3. In the presence of ATP, myelin was less dense in a sucrose gradient. Ammonia was released from the membrane during the incorporation of amino acids. Myelin preloaded with cold leucine did not incorporate [14C]leucine but did incorporate [14C]lysine; there was no cross inhibition between the two amino acids. The incorporation was into or onto proteins of the Wolfgram proteolipid fraction of myelin. The incorporation was of the high affinity type with a Km of 10?7m and was restricted to the natural amino acids.  相似文献   

13.
Abstract— Sciatic nerves from 18-day-old chick embryos incorporated 35SO4 into myelin sulphatide in vitro. Sulphatide in a microsomal subfraction of the nerve was rapidly labelled with 35SO4, and a lipoprotein fraction in the nerve served to transfer the [35S]sulphatide from the microsomal subfraction to myelin. Puromycin and cycloheximide inhibited the incorporation of [35S]sulphatide into myelin after a lag period of about 2 h. These agents did not alter the rate of appearance of [35S]sulphatide in the microsomal subfraction, and did not diminish the capacity of myelin to take up [35S]sulphatide from the lipoprotein fraction; instead, they appeared to interfere with the incorporation of [35S]sulphatide into myelin by decreasing the available pool of the transport lipoprotein. Partial characterization of the [35S]labelled lipoprotein fraction indicated that it had a density of 1.06–1.08. The lipoprotein was highly aggregated, but, after incubation with SDS and mercaptoethanol, it was dissociated into sulphatide-containing micelles and proteins.  相似文献   

14.
To investigate the incorporation of essential fatty acids into myelin components, 24-day-old rabbits were injected intracerebrally with [14C]linoleate, [14C]linolenate, or [3H]Myristate for comparison. Animals were killed 22 hr later and myelin was isolated. [3H]myristate labeled all myelin lipids including monogalactosyl diglyceride, with the exception of sulfatides. With14C-essential fatty acids, only glycerophospholipids were efficiently labeled and their specific activities were in the following decreasing orders: PC>PI>PE>PS with [14C]linoleate, and PE>PC>PI=PS with [14C]linolenate. Among myelin proteins, PLP and DM-20 were labeled with all 3 precursors. PLP was purified from myelin labeled with14C-essential fatty acids. The label was then cleaved from the protein by alkaline methanolysis and was identified as a dienoic ([14C]linoleate) or a tetraenoic ([14C]linolenate) fatty acid. MBP was not labeled with [3H]myristate, but was slightly labeled with both14C-essential fatty acids. The signification of the latter result is discussed.Abbreviations FA fatty acid(s) - HPTLC high-performance thin-layer chromatography - MBP myelin basic protein - PLP proteolipid protein - PC phosphatidylcholine - PE phosphatidylethanolamine and ethanolamine plasmalogens - PI phosphatidylinositol - PS phosphatidylserine - SDS sodium dodecylsulfate  相似文献   

15.
The incorporation of radioactive glycine into the major myelin proteolipid protein isolated from whole brain and from purified myelin of Quaking mice and normal littermates was compared. In a typical experiment, four Quaking mice and four littermate controls were injected intracranially with 250 μCi [2-3H]glycine and 25 μCi [U-14C]glycine respectively. Three hours later, the eight mice were killed and their brains combined. Equivalent portions were taken for (1) chloroform-methanol (2:1) extraction followed by ether precipitation of proteolipid from the brain and (2) myelin preparation. The 3H/14C ratios for the microsomes:, the major myelin proteolipid as well as the other non-myelin proteolipids extracted from whole brain was approx 3.0. while the 3H/14C ratio for proteolipid protein in myelin was near 0.4. These findings were consistent for ages studied between 18 and 90 days. The results indicate that the synthesis of the major myelin proteolipid protein in the whole brain of Quaking mouse, as seen previously in our studies on basic protein, proceeds at a normal rate relative to microsomes but its incorporation into myelin is depressed. A working hypothesis of myelin membrane assembly is presented to account for the defect in the incorporation of these proteins into Quaking myelin.  相似文献   

16.
Inhibitors of protein synthesis capable of differential effects on nascent peptide synthesis on membrane-bound and free polyribosomes were employed to investigate the structure and function of cellular membranes of liver. The formation of membranous whorls in the cytoplasm and distension of nuclear membranes were induced by inhibitors of protein synthesis (i.e., cycloheximide and emetine) which predominantly interfere with nascent peptide synthesis on membrane-bound polyribosomes in situ. Other inhibitors of protein synthesis such as puromycin and fusidic acid, which inhibit nascent peptide synthesis on both free and membrane-bound polyribosomes, and chloramphenicol, which inhibits mitochondrial protein synthesis, did not induce these alterations. Cycloheximide, puromycin, and chloramphenicol produce some common cellular lesions as reflected by similar alterations in morphology, such as swelling of mitochondria, degranulation of rough endoplasmic reticulum, and aggregation of free ribosomes. The process of whorl formation in the cytoplasm, the incorporation of [3H]leucine and of [3H]choline into endoplasmic reticulum and the total NADPH-cytochrome c reductase activity of the endoplasmic reticulum were determined. During maximum formation of membranous whorls, [3H]leucine incorporation into cytoplasmic membranes was inhibited, while [3H]choline incorporation into these structures was increased; maximum inhibition of protein synthesis and stimulation of choline incorporation into endoplasmic reticulum, however, preceded whorl formation. Cycloheximide decreased the activity of NADPH-cytochrome c reductase of rough endoplasmic reticulum, but increased NADPH-cytochrome c reductase activity of smooth endoplasmic reticulum. In addition, cycloheximide decreased the content of hemoprotein in both the microsomal and mitochondrial fractions of rat liver, and the activities of mixed function oxidase and of oxidative phosphorylation were impaired to different degrees. Succinate-stimulated microsomal oxidation was also inhibited. The possible mechanisms involved in the formation of membranous whorls, as well as their functions, are discussed.  相似文献   

17.
Both proteolipid proteins (PLP) and DM-20 were found to be present by the immunoblot technique in myelin isolated from quaking mouse brain; however, the relative concentration of these proteins in myelin from quaking brain was substantially reduced when compared to the control. Brain slices from littermate control and quaking mice were incubated with [3H]palmitic acid to determine the incorporation of fatty acid into myelin proteolipid proteins. Fluorography of gels containing myelin proteins from control and quaking mice brain revealed that both PLP and DM-20 were acylated. The incorporation of [3H]palmitic acid into quaking myelin PLP and DM-20 was reduced by 75% and 20% respectively of those in control brain. The significance of differential acylation of quaking myelin PLP and DM-20 is discussed with respect to availability of non-acylated pools of proteolipid proteins and the activities of acylating enzymes.  相似文献   

18.
Abstract— Brain, spinal cord and sciatic nerve from rats at different ages were incubated for 2 h in a medium containing [14C]acetate and [14C]leucine as the precursors for synthesis of lipids and proteins. Myelin was purified from the incubated tissues and the specific and total radioactivites of myelin lipids and protein were determined. The uptake of radioactive precursors decreased with increasing age up to 6 months of postnatal age, the decrease following the same pattern for the three types of myelin. After age 6 months the uptake of the protein and lipid precursors reached a plateau that persisted up to 18 months, the oldest postnatal age studied. The amount of myelin isolated and the total myelin lipids extracted from both the central and peripheral nervous systems increased continuously from age 25 days to 18 months after birth. Consequently we suggest that myelination is a process that continues during the whole life of the rat.
The metabolic activity of peripheral nerve myelin was higher than myelin from the CNS at all ages studied. Although myelination in the sciatic nerve begins before that in brain and spinal cord, the three types of myelin apparently reach maturity at the same age. Lecithin exhibited the highest metabolic activity of the individual myelin lipids at all ages in both the central and peripheral nervous system. The metabolic activity of cholesterol in myelin from the 25-day-old rats was similar to that of lecithin but decreased to very low levels in myelin from the 18-month-old rats.  相似文献   

19.
Biosynthesis of myelin proteins in vitro   总被引:3,自引:3,他引:0  
Abstract— The rates of uptake of DL-[1-14C]leucine into the three classes of protein in myelin isolated from slices of rat brain and spinal cord were determined. Basic protein exhibited the slowest rate of uptake; chloroform-methanol-soluble proteolipid protein exhibited intermediate rates and the insoluble protein had the most active uptake. All myelin proteins were less active than the mixture of proteins derived from the non-myelin fraction. Cyclohexi-mide (10?3 M) and choramphenicol (5 × 10?3 M) inhibited the incorporation of [1-14C]leucine into brain proteins by as much as 95 per cent. γ-Aminobutyric acid had no effect on the system. Chloramphenicol also inhibited the uptake of [1-14C]acetate into myelin lipids, but cycloheximide did not affect lipid synthesis. These effects were observed on both 35-day-oldand 18-month-old rats, but the biosynthetic activity was far less in myelin from the older rats. The results are discussed in relation to the structure of myelin. It is suggested that the data best fit models in which lipid and protein are in separate phases in the membrane.  相似文献   

20.
Recovery of Proteolipid Protein in Mice Heterozygous for the Jimpy Gene   总被引:1,自引:1,他引:0  
We have measured levels and synthesis of proteolipid protein (PLP) and its transport into myelin in female mice heterozygous for the jimpy gene and in their normal female littermates. In both cord and cerebrum, jimpy carriers show deficits in PLP during development followed by compensation in adulthood. Recovery of PLP occurs earlier in cord than in brain. At 13 days levels of PLP in carriers compared to controls are reduced to 0.60 and 0.44, respectively, in cord and cerebrum. By 100 days, normal levels of PLP are attained in cord (1.13) whereas levels of PLP in cerebrum are only 0.78 of control. By 200 days full recovery occurs in cerebrum, with a ratio of 1.21, suggesting a possible over-compensation. The yield of myelin from cerebrum was reduced to 0.78 in carriers compared to controls at 17 days. In brain slices, incorporation of [3H]leucine into homogenate PLP from carriers is the same as in controls, whereas [3H]leucine incorporation into myelin PLP is reduced to 0.68 of control. These results indicate that synthesis of PLP in the carriers is normal at 17 days, but transport of PLP into myelin is reduced. Similarly, acylation of homogenate PLP is normal, whereas acylation of myelin PLP is reduced, as measured by incorporation of [3H]palmitic acid. Transport of PLP into myelin was compared to transport of MBP; transport of both proteins was equally decreased as indicated by the similar ratio of labeled PLP to MBP in myelin from carriers compared to noncarriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号