首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of colchicine on 17 beta-estradiol-induced water and electrolyte uptake in the uterus of the immature rat have been examined 6 h after treatment with this estrogen. Estradiol stimulates an increase in total uterine Na+, K+ and water while intracellular Na+ and K+ concentrations remain relatively unchanged. Assuming the sodium space is equivalent to the extracellular space, the extracellular fluid compartment increases about 84% in response to estradiol. Similarly, the intracellular compartment increases by about 62%. The uptake of water into the cellular compartment may be a direct response to a stimulation of K+ accumulation by uterine cells. Colchicine inhibits both estradiol-induced rise in intracellular potassium and both intra- and extracellular water.  相似文献   

2.
The Na(+),K(+)-ATPase is postulated to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembrane Na(+)-efflux from cardiac cells in spontaneously hypertensive rats (SHR). In the investigated group of SHR the systolic blood pressure and the heart weight were increased by 48% and by 60%, respectively. Upon activating the cardiac Na(+),K(+)-ATPase with substrate, its activity was lower in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (Vmax) by 28% which was accompanied with lowered affinity of the ATP-binding site as indicated by the increased value of Michaelis-Menten constant (Km) by 354% in SHR. During activation with Na(+), we observed an inhibition of the enzyme in hearts from SHR at all tested Na(+) concentrations. The value of Vmax decreased by 37%, and the concentration of Na(+) that gives half maximal reaction velocity (KNa) increased by 98%. This impairment in the affinity of the Na(+)-binding site together with decreased affinity to ATP in the molecule of the Na(+),K(+)-ATPase are probably responsible for the deteriorated efflux of the excessive Na(+) from the intracellular space in hearts of SHR.  相似文献   

3.
Previous studies have shown that docosahexaenoic acid (DHA) has an antihypertensive effect in spontaneously hypertensive rats (SHR). To investigate possible mechanisms for this effect, vascular pathology and reactivity were determined in SHR treated with dietary DHA. SHR (7 weeks) were fed a purified diet with either a combination of corn/soybean oils or a DHA-enriched oil for 6 weeks. Histological evaluation of heart tissue, aorta, coronary, and renal arteries was performed. Vascular responses were determined in isolated aortic rings. Contractile responses to agonists, including norepinephrine (10(-9) to 10(-4) M), potassium chloride (5-55 mM), and angiotensin II (5 x 10(-7) M) were assessed. Vasorelaxant responses to acetylcholine (10(-9) to 10 (-4) M), sodium nitroprusside (10(-9) to 10(-6) M), papaverine (10(-5) to 10(-4) M), and methoxyverapamil (D600, 1-100 microM) were determined. DHA-fed SHR had significantly reduced blood pressure (P < 0.001) and vascular wall thicknesses in the coronary, thoracic, and abdominal aorta compared with controls (P < 0.05) Contractile responses to agonists mediated by receptor stimulation and potassium depolarization were not altered in DHA-fed SHR. Endothelial-dependent relaxations to acetylcholine were not altered which suggests endothelial-derived nitric oxide production/release is not affected by dietary DHA. Other mechanisms of vascular relaxation, including intracellular cyclic nucleotides, cGMP, and cAMP were not altered by dietary DHA because aortic relaxant responses to sodium nitroprusside and papaverine were similar in control and DHA-fed SHR. No significant differences were seen in relaxant responses to the calcium channel blocker, D600, or contractile responses to norepinephrine in the absence of extracellular calcium. These results suggest that dietary DHA does not affect mechanisms related to extracellular calcium channels or intracellular calcium mobilization. Moreover, the contractile and vasorelaxant responses are not differentially altered with dietary DHA in this in vivo SHR model. The findings demonstrate that dietary DHA reduces systolic blood pressure and vascular wall thickness in SHR. This may contribute to decrease arterial stiffness and pulse pressure, in addition to the antihypertensive properties of DHA. The antihypertensive properties of DHA are not related to alterations in vascular responses.  相似文献   

4.
Studies were performed to determine the pH relationships among the extracellular, intracellular, and arterial blood compartments in the brain in vivo. Resolution of the extracellular monophosphate resonance peak from the intracellular peak in 31P nuclear magnetic resonance (NMR) spectra of sheep brain with the calvarium intact enabled pH measurement in these respective compartments. Sheep were then subjected to both hyper- and hypoventilation, which resulted in a wide range of arterial PCO2 and pH values. Linear regression analysis of pH in these compartments yielded slopes of 0.56 +/- 0.05 for extracellular pH (pHe) vs. arterial pH, 0.43 +/- 0.078 for intracellular pH (pHi) vs. pHe, and 0.23 +/- 0.056 for pHi vs. arterial pH. These data indicate that CO2 buffering capacity is different and decreases from the intracellular to extracellular to arterial blood compartments. Separation of the extracellular space from the vascular space may be a function of the blood-brain barrier, which contributes to the buffering capability of the extracellular compartment. A marked decrease in the pH gradient between the extracellular and intracellular space occurs during hypercarbia and may influence mechanisms of central respiratory control.  相似文献   

5.
Summary The photoreceptive microvilli in the visual cells of the leech protrude into a large intracellular vacuole which is but an extracellular compartment (ionic composition unknown), because it communicates with the extracellular space by narrow ( 20 nm) clefts (septate junctions) of unknown permeability properties. Application of Thiéry's cytochemical silver proteinate method reveals that the vacuole contains carbohydrate-rich material. We used electron probe microanalysis of dry, ultrathin cryosections to determine quantitatively the elemental (K, Na, Cl, Mg, Ca, P, S) composition of the cytoplasm, vacuole and extracellular space.The composition of the vacuole is similar to that of the extracellular space, as shown by the comparable Na/K (11 to 13) and K/Ca (1.8 to 2.2) ratios in these two compartments. There are neglible concentration gradients for Na, K and Cl between vacuole and extracellular space. The vacuole has a high S content and a relatively large deficit of Cl compared to [Na]+[K]+2 [Ca]. Thus the data indicate that the vacuole is in ionic communication with the extracellular space and contains sulfonated glycoprotein(s) that can partially exclude Cl; electroneutrality is maintained in part by these organic anions. The cytoplasmic K concentration (393±30 mmol/kg dry wt) is comparable to that in other nerve cells. The cytoplasmic Cl concentration (216±14 mmol/kg dry wt) is relatively high: significantly (P<0.001) higher than the cytoplasmic Na (130±15 mmol/kg dry wt). The high cytoplasmic Cl content is in excess of that predicted by passive distribution, and suggests the operation of a Cl pump.  相似文献   

6.
To determine whether Na/Ca exchange is altered in primary hypertension, Na-dependent changes in intracellular Ca, ([Ca]i), were measured in isolated perfused hearts from Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Intracellular Na, (Nai, mEq/kg dry wt), and [Ca]i were measured by NMR spectroscopy. Control [Ca]i was less in WKY than SHR (176 +/- 18 vs 253 +/- 21 nmol/l; mean +/- S.E., P < 0.05), whereas Nai was not significantly different. One explanation for this is that net Na/Ca exchange flux is decreased in SHR. If this hypothesis is correct, the rate of Ca uptake in SHR should be less than WKY when Na/Ca exchange is reversed by decreasing the transmembrane Na gradient. The Na gradient was reduced by decreasing extracellular Na, ([Na]o) and/or by increasing [Na]i. To increase [Na]i, Na uptake was stimulated by acidification while Na extrusion by Na/K ATPase was inhibited by K-free perfusion. Seventeen minutes after acidification, Nai had increased but was not significantly different in SHR and WKY (18.0 +/- 2.3 to 57.4 +/- 7.6 vs 20.3 +/- 0.6 to 66.5 +/- 4.8 mEq/kg dry wt, respectively). Yet [Ca]i was greater in WKY than SHR (1768 +/- 142 vs 1201 +/- 90 nmol/l; P < 0.05). [Ca]i was also measured after decreasing [Na]o from 141 to 30 mmol/l. Fifteen minutes after reducing [Na]o, [Ca]i was greater in WKY than SHR (833 +/- 119 vs 425 +/- 94 nmol/l; P < 0.05). Thus for both protocols, decreasing the transmembrane Na gradient led to increased [Ca]i in both SHR and WKY, but less increase in SHR. The results are consistent with the hypothesis that Na/Ca exchange activity is less in SHR than WKY myocardium.  相似文献   

7.
The effect of acute arterial hypertension on proximal tubular fluid reabsorption was investigated in Sprague-Dawley rats and spontaneously hypertensive rats (SHR) by measuring proximal tubular flow with a nonobstructive optical method. Under control conditions, spontaneous tubular flow was oscillating at 0.02-0.03 Hz in Sprague-Dawley rats. Acute hypertension induced an immediate increase of mean tubular flow (50% increase after 20 min of hypertension) and augmentation of oscillatory amplitude. Acute hypertension did not alter single-nephron blood flow as measured by laser-Doppler velocimetry (n = 12), suggesting that the increase of tubular flow was due to inhibition of reabsorption but not increase of filtration. By contrast, spontaneous tubular flow was fluctuating aperiodically in SHR. Acute hype tension did not induce a continuous increase of tubular flow or an increase in amplitude of fluctuations (n = 15). When apical Na(+)/H(+) exchange activity of proximal tubule was monitored, acute hypertension did not alter the activity in SHR (n = 8), while similar procedures had been shown to inhibit apical Na(+)/H(+) exchange activity of proximal tubules by more than 40% in Sprague-Dawley rats. These observations suggest that acute hypertension inhibits proximal tubular fluid reabsorption by inhibiting apical Na(+)/H(+) exchange activity in Sprague-Dawley rats and that this mechanism is impaired in SHR.  相似文献   

8.
To obtain information about changes in lysosomal enzyme activities in the aortic endothelial cells in arterial hypertension, semi-quantitative histochemical investigations of acid phosphatase (Ac-Pase) and N-acetyl-beta-glucosaminidase (NAGase) activities in the aorta of rats with renal hypertension were performed on "H?utchen" monolayer preparations. The aortic endothelial cells in renal hypertensive animals showed increased Ac-Pase and NAGase activities compared with those in control normotensive rats and tended to increase with advancing age. These results, like our previous data from spontaneously hypertensive rats (SHR), indicated that degeneration of endothelial cells, expressed by increased lysosomal enzyme activity, was accelerated by hypertension, and the possible participation of genetic factors in the activation of these enzymes in SHR was ruled out. Increased lysosomal enzyme activity may be involved in the development of other hypertensive vascular changes.  相似文献   

9.
Autoradiographic tests carried out on rats with renal hypertension using 3H-proline resulted in an acclerated collagen synthesis by media cells of aorta and coronary arteries. Electronmicroscopically an increased content of collagen fibers and an enrichment of ruthenium-red-positive substances in the extracellular space were found. The 35S-sulfate-incorporation in aorta and coronary arteries of animals with hypertension is also increased. These changes in the extracellular space of the vascular wall have an atherosclerosis promoting effect, probably caused by a distrubance of the permeability.  相似文献   

10.
The role of arterial receptors to mineralocorticoids (MC) and glucocorticoids (GC) in the induction by MC and GC of changes in transmembrane transport of sodium (Na+) and water was investigated. Implantation of Silastic rubber strips impregnated with 11-desoxycorticosterone acetate (DOCA) in rabbits was followed by a marked increase in vascular smooth muscle cell membrane permeability to Na+ and hypertension. Both of these effects were preventable with progesterone, an anti-MC at the steroid-receptor level, implanted in relative excess simultaneously with DOCA, in approximately 50% of the implanted animals. The other 50% were hydroxylating in vivo progesterone to 11-desoxycorticosterone (DOC) efficiently enough not to yield the necessary ratio of progesterone to DOC for the sufficient MC receptor blockage. In vascular smooth muscle cell culture, grown in the presence of steroids, GC but not MC increased intracellular water space. This increase was preventable by a potent synthetic anti-GC,RU 38486, a steroid with high affinity for GC receptors, added to culture medium along with GC. These results provide evidence that both the in vivo effect of MC on Na+ permeability and the induction of hypertension, and the in vitro effect of GC on water transport in cultured vascular smooth muscle cells are elicited through the receptor-mediated molecular mechanism(s) for action of these steroids in the arterial wall.  相似文献   

11.
Summary Smooth muscle cells obtained from three distinct segments of the thoracic aorta of both Wistar Kyoto (WKY) and Spontaneously Hypertensive Rats (SHR) taken at different stages of development were studied in terms of their volume, DNA content in single cell suspensions, and doubling time in primary cultures. The proliferative activity and mean cell volume of myocytes from WKY rats increase along the thoracic aorta in a gradient from the aortic arch to the diaphragm. The slope of this gradient is increased in SHR because of an extension of the area that contains myocytes with low proliferative activity in primary cell culture and large cell volumes in suspension. Tetraploid myocytes are found in both strains and their proportions are larger in SHR than in WKY, specifically after the onset of hypertension. However, they appear to be evenly distributed along the thoracic aorta with a size distribution that is included in that of the diploid cells from the same area. It is suggested that changes in the structural properties of the aortic-cell compartment, associated with maturation and hypertension, reflect quantitative changes in the relative proportions of several myocyte subpopulations within the aorta of the rat.  相似文献   

12.
Chemical distribution measurements of radioactive sodium-thiosulfate (35S) and of the brain water indicate that infusion of 2.4-dinitrophenol into a carotid artery of rats caused a water uptake and fluid shifts from the extra- into the intracellular compartments in the central nervous system. The extracellular marker compound was administered to the brain via ventriculo-cisternal perfusion and intravenous injection yielding almost equal concentrations in plasma-water and perfusate. In order to prevent an active efflux of the label from the tissue, high concentrations were utilized in the perfusate to saturate potential outward transport mechanisms. The indicator space (based on total brain water) was 16% in controls and 12% in experimental animals when marker equilibrium had been attained, which is equivalent in reduction of the extracellular space of about 1/4. Intracellular water and Na+ rose after DNP, while K+ remained all but unchanged. The fluid shift into the intracellular compartment was found to relate closely with a cellular uptake of Na+. The Na+ concentration both in plasma and in the perfusion fluid leaving the ventricular system was consistently reduced in experimental animals. The K+ concentration was significantly elevated in the plasma of experimental animals but virtually unchanged in the cisternal effluate.  相似文献   

13.
23Na NMR studies of rat outer medullary kidney tubules   总被引:2,自引:0,他引:2  
Two reservations have previously made interpretation of biological 23Na NMR measurements difficult: the "size" of the extracellular space penetrated by the shift reagent and the possibility of a 60% reduction in the intensity of the NMR-visible 23Na signal due to quadrupolar interactions (Berendsen, H. J. C., and Edzes, H. T. (1973) Ann. N. Y. Acad. Sci. 204, 459-485; Civan, M. M., Degani, H., Margalit, Y., and Shporer, M. (1983) Am. J. Physiol. 245, C213-C219; Gupta, R. K., and Gupta, P. (1982) J. Magn. Reson. 47, 344-350). We have addressed both these issues using a suspension of rat outer medullary kidney tubules, nephron segments responsible for the fine control of total body volume and electrolyte balance. First, the extracellular space penetrated by the shift reagent dysprosium tripolyphosphate, as defined by the extracellular 23Na resonance, revealed a space similar to that which contained extracellular 35Cl- ions. Measurement of an extracellular 35Cl- space using 35Cl NMR was possible because the intracellular 35Cl- resonance was broadened beyond detection in the cells studied. Second, to characterize the reduction of the 23Na signal by quadrupolar interactions, the intracellular 23Na level was raised artificially by simultaneously inhibiting Na+ efflux and increasing the ion permeability of the plasma membrane. Under these conditions, NMR-observable intracellular Na+ reached a level which was approximately 81% of that in the medium, a level determined using chemical techniques. This observation would suggest that the resonance of the intracellular 23Na pool was not subject to a 60% reduction in signal intensity, as a result of nuclear quadrupolar interaction. The intracellular 23Na level measured, under basal conditions, was 23 +/- 2 mumol/ml of cell water (37 degrees C) (n = 3, S.D.) and was demonstrated to be responsive to a number of physiological stimuli. The level was temperature-sensitive. It was reduced by inhibitors of apical Na+ transport, furosemide and amiloride, and it was raised with (Na+ + K+)-ATPase inhibition. The furosemide and amiloride actions described would suggest that the Na+-transporting mechanisms sensitive to these agents (e.g. Na+/K+/Cl- cotransport system, Na+:H+ exchange system) contribute to the regulation of the intracellular Na+ level in the kidney tubular preparation studied.  相似文献   

14.
Alterations in the formation and metabolism of bradykinin (Bk) are hypothesized to play a role in the pathophysiology of hypertension, atherosclerosis and vascular complications of diabetes. However, despite its prominent role in cardiovascular regulation, studies on bradykinin have been limited by various difficulties in accurate measurements of this peptide in biological samples. In this study, using the LC-ESI-MS method we estimated the conversion of exogenous Bk to its main metabolites - Bk-(1-5) and Bk-(1-7) - in endothelial cell culture and in fragments of aorta of normotensive (WKY) and hypertensive rats (SHR). The effects of angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP) inhibitors were more pronounced in SHR: perindoprilat inhibited Bk-(1-5) formation by 49 % and 76 % in WKY and SHR rats, respectively, and tiorphan tended to decrease formation of Bk-(1-5) in both groups of animals. The degradation of bradykinin and generation of both metabolites were significantly higher in the aorta of SHR rats than in WKY controls. Our results show that even in relatively early hypertension (in 4-month old SHR rats) inactivation of Bk by aorta wall is enhanced.  相似文献   

15.
In Dahl salt-sensitive (S) and salt-resistant (R) rats, and spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats, at 5-6 wk of age, a cannula was placed in the cisterna magna, and cerebrospinal fluid (CSF) was withdrawn continuously at 75 microl/12 h. CSF was collected as day- and nighttime samples from rats on a regular salt intake (0.6% Na+; R-Na) and then on a high salt intake (8% Na+; H-Na). In separate groups of rats, the abdominal aorta was cannulated and blood pressure (BP) and heart rate (HR) measured at 10 AM and 10 PM, with rats first on R-Na and then on H-Na. On H-Na, CSF [Na+] started to increase in the daytime of day 2 in Dahl S rats and of day 3 in SHR. BP and HR did not rise until day 3 in Dahl S rats and day 4 in SHR. In Dahl R and WKY rats, high salt did not change CSF [Na+], BP, or HR. In a third set of Dahl S rats, sampling of both CSF and BP was performed in each individual rat. Again, significant increases in CSF [Na+] were observed 1-2 days earlier than the increases in BP and HR. In a fourth set of Dahl S rats, BP and HR were recorded continuously by means of radiotelemetry for 5 days on R-Na and 8 days on H-Na. On H-Na, BP (but not HR) increased first in the nighttime of day 2. In another set of Dahl S rats, intracerebroventricular infusion of antibody Fab fragments binding ouabain-like compounds (OLC) with high affinity prevented the increase in BP and HR by H-Na but further increased CSF [Na+]. Finally, in Wistar rats on H-Na, intracerebroventricular infusion of ouabain increased BP and HR but decreased CSF [Na+]. Thus, in both Dahl S and SHR on H-Na, increases in CSF [Na+] preceded the increases in BP and HR, consistent with a primary role of increased CSF [Na+] in the salt-induced hypertension. An increase in brain OLC in response to the initial increase in CSF [Na+] appears to attenuate further increases in CSF [Na+] but at the "expense" of sympathoexcitation and hypertension.  相似文献   

16.
Spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were placed on sodium restricted diets (9 and 17 mumol/g) or on a regular sodium diet (101 mumol/g) at 2, 4, 7, or 10 weeks of age, and continued until 16 weeks of age. Severe sodium restriction (9 mumol/g) initiated at 2 or 4 weeks of age prevented hypertension development in SHR and severely retarded growth. Hypertension development was attenuated when 9 mumol/g was initiated at 7 weeks of age, and was not affected when started at 10 weeks of age. Mean arterial pressure (MAP) in WKY receiving 9 mumol Na/g initiated at 2 and 4 weeks of age was below normal, but was not affected when this diet was given at 7 or 10 weeks of age. Less severe sodium restriction (17 mumol Na/g) resulted in a reduction in hypertension development when initiated at 2, 4, and 7 weeks of age, but not at 10 weeks of age. MAP was normal in WKY receiving 17 mumol Na/g at all ages of diet initiation. When the 9 or 17 mumol Na/g diet were initiated at 2, 4, and 7 weeks of age, the response of blood pressure to hexamethonium administration was blunted in SHR relative to both WKY receiving the same diet, and to control SHR receiving 101 mumol Na/g. We conclude that both WKY and SHR require a minimum amount of dietary sodium for normal growth and for the achievement of normal BP in WKY, and hypertension in SHR. This sodium requirement decreases with age. SHR and WKY exhibit similar sensitivities to sodium intake with respect to body weight, but the effects on BP are more pronounced in SHR. The BP lowering effects of dietary sodium restriction may be due to a blunting of the pressor effectiveness of the sympathetic nervous system.  相似文献   

17.
It has been shown that endothelium-derived nitric oxide (NO) plays an important role in regulation of vascular tone in the prenatal and early postnatal period. The aim of this paper was to determine the reactivity and accompanying structural changes in thoracic aorta from 4-week-old spontaneously hypertensive rats (SHR) and rats with hereditary hypertriglyceridemia (hHTG) in comparison with age-matched normotensive controls. For functional studies thoracic aorta was excised, cut into rings and mounted in organ baths for measurement of isometric contractile force. For morphological studies cardiovascular system of rats was perfused with glutaraldehyde fixative (at 100 mm Hg) via cannula placed in the left ventricle. Morphological changes of thoracic aorta were measured using light microscopy. Systolic blood pressure (SBP) in SHR (98+/-1 mm Hg) did not significantly differ from that of age-matched control rats (95+/-4 mm Hg), but was slightly increased in hHTG rats (110+/-2 mm Hg, P<0.05). Heart weight/body weight ratio was higher in SHR and hHTG rats than in control group indicating the hypertrophy of the heart in both models of hypertension. Endothelium-dependent relaxation of aorta induced by acetylcholine was preserved in all groups and did not differ from that in control normotensive rats. The maximal isometric contraction of thoracic aorta to noradrenaline (NA) was reduced in hypertensive groups and the concentration-response curves to NA were shifted to the right indicating increased sensitivity of smooth muscle to NA. The values of wall thickness and cross sectional area as well as inner diameter of thoracic aorta in SHR and hHTG rats were significantly decreased in comparison to control groups. Endothelial dysfunction seems to be absent in all young rats before development of hypertension. In conclusion, our observations indicate that in early stage of experimental hypertension NO-dependent relaxation is preserved so that putative impairment of this function provides no significant pathogenic contribution to the onset of hypertension in these two experimental models.  相似文献   

18.
The effect of extracellular and intracellular Na(+) on the single-channel kinetics of Mg(2+) block was studied in recombinant NR1-NR2B NMDA receptor channels. Na(+) prevents Mg(2+) access to its blocking site by occupying two sites in the external portion of the permeation pathway. The occupancy of these sites by intracellular, but not extracellular, Na(+) is voltage-dependent. In the absence of competing ions, Mg(2+) binds rapidly (>10(8) M(-1)s(-1), with no membrane potential) to a site that is located 0.60 through the electric field from the extracellular surface. Occupancy of one of the external sites by Na(+) may be sufficient to prevent Mg(2+) dissociation from the channel back to the extracellular compartment. With no membrane potential; and in the absence of competing ions, the Mg(2+) dissociation rate constant is >10 times greater than the Mg(2+) permeation rate constant, and the Mg(2+) equilibrium dissociation constant is approximately 12 microM. Physiological concentrations of extracellular Na(+) reduce the Mg(2+) association rate constant approximately 40-fold but, because of the "lock-in" effect, reduce the Mg(2+) equilibrium dissociation constant only approximately 18-fold.  相似文献   

19.
The aim of this study was to compare the vascular reactivity and morphology of iliac artery (IA) in adult spontaneously hypertensive rats (SHR) and hereditary hypertriglyceridemic (hHTG) rats. The isolated rings of iliac artery (IA) from Wistar rats (controls), SHR and hHTG rats were used for measurement of relaxant responses to acetylcholine (ACh) and contractile responses to noradrenaline (NA). Morphological changes of IA were measured using light microscopy. Systolic blood pressure (BP) measured by plethysmographic method was increased in SHR approximately by 88 % and in hHTG rats by 44 % compared to controls. BP increase was accompanied by cardiac hypertrophy. In both SHR and hHTG groups (experimental groups) reduced relaxation to ACh and enhanced maximal contraction and sensitivity to adrenergic stimuli were observed. The sensitivity to NA in SHR was higher also in comparison with hHTG. Geometry of IA in both experimental groups revealed increased wall thickness and wall cross-sectional area, in SHR even in comparison with hHTG. Inner diameter was decreased in both experimental groups. Thus, independently of etiology, hypertension in both models was connected with impaired endothelial function accompanied by structural alterations of IA. A degree of BP elevation was associated with arterial wall hypertrophy and increased contractile sensitivity.  相似文献   

20.
The compartmentalization of body fluids was measured in individual Pekin ducks ( Anas platyrhynchos) drinking freshwater and after sequential acclimation to 300 mM NaCl and 400 mM NaCl. Total body water, extracellular fluid volume, plasma volume and exchangeable sodium pool were measured using (3)H(2)O, [(14)C]-polyethylene glycol, Evans Blue dye, and (22)Na dilution, respectively. Following acclimation to 300 mM NaCl, body mass decreased, but total body water and total exchangeable sodium pool were unaltered. Na and water were redistributed from the extracellular fluid (interstitial fluid) compartment into the intracellular fluid compartment. Following further acclimation to 400 mM NaCl, body mass, total body water and intracellular fluid volume decreased, but exchangeable sodium pool and extracellular fluid volume were unchanged. Our results suggested that, when Pekin ducks drink high but tolerable salinities, they maintain total body water, but redistribute Na(+) and water from interstitial fluid to the intracellular fluid compartment. When stressed beyond their ability to maintain total body water, they lose water from the intracellular fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号