首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, mitosis requires the activation of cdc2 kinase via association with cyclin B and dephosphorylation of the threonine 14 and tyrosine 15 residues. It is known that in the budding yeast Saccharomyces cerevisiae, a homologous kinase, Cdc28, mediates the progression through M phase, but it is not clear what specific mitotic function its activation by the dephosphorylation of an equivalent tyrosine (Tyr-19) serves. We report here that cells expressing cdc28-E19 (in which Tyr-19 is replaced by glutamic acid) perform Start-related functions, complete DNA synthesis, and exhibit high levels of Clb2-associated kinase activity but are unable to form bipolar spindles. The failure of these cells to form mitotic spindles is due to their inability to segregate duplicated spindle pole bodies (SPBs), a phenotype strikingly similar to that exhibited by a previously reported mutant defective in both kinesin-like motor proteins Cin8 and Kip1. We also find that the overexpression of SWE1, the budding-yeast homolog of wee1, also leads to a failure to segregate SPBs. These results imply that dephosphorylation of Tyr-19 is required for the segregation of SPBs. The requirement of Tyr-19 dephosphorylation for spindle assembly is also observed under conditions in which spindle formation is independent of mitosis, suggesting that the involvement of Cdc28/Clb kinase in SPB separation is direct. On the basis of these results, we propose that one of the roles of Tyr-19 dephosphorylation is to promote SPB separation.  相似文献   

2.
Separation of duplicated centrosomes (spindle-pole bodies or SPBs in yeast) is a crucial step in the biogenesis of the mitotic spindle. In vertebrates, centrosome separation requires the BimC family kinesin Eg5 and the activities of Cdk1 and polo kinase; however, the roles of these kinases are not fully understood. In Saccharomyces cerevisiae, SPB separation also requires activated Cdk1 and the plus-end kinesins Cin8 (homologous to vertebrate Eg5) and Kip1. Here we report that polo kinase has a role in the separation of SPBs. We show that adequate accumulation of Cin8 and Kip1 requires inactivation of the anaphase-promoting complex-activator Cdh1 through sequential phosphorylation by Cdk1 and polo kinase. In this process, Cdk1 functions as a priming kinase in that Cdk1-mediated phosphorylation creates a binding site for polo kinase,which further phosphorylates Cdh1. Thus, Cdh1 inactivation through the synergistic action of Cdk1 and polo kinase provides a new model for inactivation of cell-cycle effectors.  相似文献   

3.
The budding yeast spindle aligns along the mother- bud axis through interactions between cytoplasmic microtubules (CMs) and the cell cortex. Kar9, in complex with the EB1-related protein Bim1, mediates contacts of CMs with the cortex of the daughter cell, the bud. Here we established a novel series of events that target Kar9 to the bud cortex. First, Kar9 binds to spindle pole bodies (SPBs) in G(1) of the cell cycle. Secondly, in G(1)/S the yeast Cdk1, Cdc28, associates with SPBs and phosphorylates Kar9. Thirdly, Kar9 and Cdc28 then move from the SPB to the plus end of CMs directed towards the bud. This movement is dependent upon the microtubule motor protein Kip2. Cdc28 activity is required to concentrate Kar9 at the plus end of CMs and hence to establish contacts with the bud cortex. The Cdc28-regulated localization of Kar9 is therefore an integral part of the program that aligns spindles.  相似文献   

4.
Duplication of centrosomes once per cell cycle is essential for bipolar spindle formation and genome maintenance and is controlled in part by cyclin-dependent kinases (Cdks). Our study identifies Sfi1, a conserved component of centrosomes, as the first Cdk substrate required to restrict centrosome duplication to once per cell cycle. We found that reducing Cdk1 phosphorylation by changing Sfi1 phosphorylation sites to nonphosphorylatable residues leads to defects in separation of duplicated spindle pole bodies (SPBs, yeast centrosomes) and to inappropriate SPB reduplication during mitosis. These cells also display defects in bipolar spindle assembly, chromosome segregation, and growth. Our findings lead to a model whereby phosphoregulation of Sfi1 by Cdk1 has the dual function of promoting SPB separation for spindle formation and preventing premature SPB duplication. In addition, we provide evidence that the protein phosphatase Cdc14 has the converse role of activating licensing, likely via dephosphorylation of Sfi1.  相似文献   

5.
The mitotic exit network (MEN) governs Cdk inactivation. In budding yeast, MEN consists of the protein phosphatase Cdc14, the ras-like GTPase Tem1, protein kinases Cdc15, Cdc5, Dbf2 and Dbf2-binding protein Mob1. Tem1, Dbf2, Cdc5 and Cdc15 have been reported to be localized at the spindle pole body (SPB). Here we report changes of the localization of Dbf2 and Mob1 during cell division. Dbf2 and Mob1 localize to the SPBs in anaphase and then moves to the bud neck, just prior to actin ring assembly, consistent with their role in cytokinesis. The neck localization, but not SPB localization, of Dbf2 was inhibited by the Bub2 spindle checkpoint. Cdc14 is the downstream target of Dbf2 in Cdk inactivation, but we found that the neck localization of DbP2 and Mob1 was dependent on the Cdc14 activity, suggesting that Dbf2 and Mob1 function in cytokinesis at the end of the mitotic signaling cascade.  相似文献   

6.
The nucleus of the budding yeast S. cerevisiae has to move to the bud neck during mitosis in order for proper DNA segregation to take place. This movement is mediated by spindle and astral microtubules, and it relies on forces generated by microtubule-associated motor proteins. When budding yeast cells express the non-cleavable cohesin subunit, Scc1-RRDD, sister chromatid separation is blocked, preventing the spindle from elongating. Thus, in the presence of Scc1-RRDD nuclear positioning is mediated solely by forces acting through astral microtubules. We have previously shown that under these conditions cells exit mitosis with the nucleus in the mother cells, and that the position of the nucleus is determined, at least in part, by the FEAR pathway, which regulates various aspects of mitotic exit. When the FEAR pathway is inactivated, cells expressing Scc1-RRDD exit mitosis with the nucleus in the daughter cells (referred to as a “daughterly phenotype”). In order to find additional proteins that participate in nuclear positioning, we screened a series of mutant strains for those that displayed a daughterly phenotype when Scc1-RRDD was expressed. The most prominent defects were seen in ase1Δ and cin8Δ mutant cells. Both Ase1p and Cin8p were previously shown to be nuclear and to be involved in spindle function. We show here that deletion of ASE1 or CIN8 causes a defect in SPB separation and leads to an abnormal number of astral microtubules and a change in their orientation within the cell. Taken together, these results suggest that in budding yeast Ase1p and Cin8p affect nuclear positioning through astral microtubule-dependent mechanisms.  相似文献   

7.
Duplication of the Saccharomyces cerevisiae spindle pole body (SPB) once per cell cycle is essential for bipolar spindle formation and accurate chromosome segregation during mitosis. We have investigated the role that the major yeast cyclin-dependent kinase Cdc28/Cdk1 plays in assembly of a core SPB component, Spc42, to better understand how SPB duplication is coordinated with cell cycle progression. Cdc28 is required for SPB duplication and Spc42 assembly, and we found that Cdc28 directly phosphorylates Spc42 to promote its assembly into the SPB. The Mps1 kinase, previously shown to regulate Spc42 phosphorylation and assembly, is also a Cdc28 substrate, and Cdc28 phosphorylation of Mps1 is needed to maintain wild-type levels of Mps1 in cells. Analysis of nonphosphorylatable mutants in SPC42 and MPS1 indicates that direct Spc42 phosphorylation and indirect regulation of Spc42 through Mps1 are two overlapping pathways by which Cdc28 regulates Spc42 assembly and SPB duplication during the cell cycle.  相似文献   

8.
Two Saccharomyces cerevisiae kinesin-related motors, Cin8p and Kip1p, perform an essential role in the separation of spindle poles during spindle assembly and a major role in spindle elongation. Cin8p and Kip1p are also required to prevent an inward spindle collapse prior to anaphase. A third kinesin-related motor, Kar3p, may act antagonistically to Cin8p and Kip1p since loss of Kar3p partially suppresses the spindle collapse in cin8 kip1 mutants. We have tested the relationship between Cin8p and Kar3p by overexpressing both motors using the inducible GAL1 promoter. Overexpression of KAR3 results in a shrinkage of spindle size and a temperature-dependent inhibition of the growth of wild-type cells. Excess Kar3p has a stronger inhibitory effect on the growth of cin8 kip1 mutants and can completely block anaphase spindle elongation in these cells. In contrast, overexpression of CIN8 leads to premature spindle elongation in all cells tested. This is the first direct demonstration of antagonistic motors acting on the intact spindle and suggests that spindle length is determined by the relative activity of Kar3p-like and Cin8p/Kip1p-like motors.  相似文献   

9.
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression.  相似文献   

10.
It is critical to elucidate the pathways that mediate spindle assembly and therefore ensure accurate chromosome segregation during cell division. Our studies of a unique allele of the budding yeast Ipl1/Aurora protein kinase revealed that it is required for centrosome-mediated spindle assembly in the absence of the BimC motor protein Cin8. In addition, we found that the Ase1 spindle midzone-associated protein is required for bipolar spindle assembly. The cin8 ipl1 and cin8 ase1 double mutant cells exhibit similar defects, and Ase1 overexpression completely restores spindle assembly in cin8 ipl1 strains. Consistent with the possibility that Ipl1 regulates Ase1, an ase1 mutant lacking the Ipl1 consensus phosphorylation sites cannot assemble spindles in the absence of Cin8. In addition, Ase1 phosphorylation and localization were altered in an ipl1 mutant. We therefore propose that Ipl1/Aurora and Ase1 constitute a previously unidentified spindle assembly pathway that becomes essential in the absence of Cin8.  相似文献   

11.
Cdc14-regulated midzone assembly controls anaphase B   总被引:5,自引:1,他引:4       下载免费PDF全文
Spindle elongation in anaphase of mitosis is a cell cycle-regulated process that requires coordination between polymerization, cross-linking, and sliding of microtubules (MTs). Proteins that assemble at the spindle midzone may be important for this process. In this study, we show that Ase1 and the separase-Slk19 complex drive midzone assembly in yeast. Whereas the conserved MT-bundling protein Ase1 establishes a midzone, separase-Slk19 is required to focus and center midzone components. An important step leading to spindle midzone assembly is the dephosphorylation of Ase1 by the protein phosphatase Cdc14 at the beginning of anaphase. Failure to dephosphorylate Ase1 delocalizes midzone proteins and delays the second, slower phase of anaphase B. In contrast, in cells expressing nonphosphorylated Ase1, anaphase spindle extension is faster, and spindles frequently break. Cdc14 also controls the separase-Slk19 complex indirectly via the Aurora B kinase. Thus, Cdc14 regulates spindle midzone assembly and function directly through Ase1 and indirectly via the separase-Slk19 complex.  相似文献   

12.
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non‐motor microtubule‐associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule‐bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post‐translational modifications of Ase1/PRC1 by cyclin‐dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo‐like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.  相似文献   

13.
The Schizosaccharomyces pombe septation initiation network (SIN) is an Spg1-GTPase-mediated protein kinase cascade that triggers actomyosin ring constriction, septation, and cell division. The SIN is assembled at the spindle pole body (SPB) on the scaffold proteins Cdc11 and Sid4, with Cdc11 binding directly to SIN signaling components. Proficient SIN activity requires the asymmetric distribution of its signaling components to one of the two SPBs during anaphase, and Cdc11 hyperphosphorylation correlates with proficient SIN activity. In this paper, we show that the last protein kinase in the signaling cascade, Sid2, feeds back to phosphorylate Cdc11 during mitosis. The characterization of Cdc11 phosphomutants provides evidence that Sid2-mediated Cdc11 phosphorylation promotes the association of the SIN kinase, Cdc7, with the SPB and maximum SIN signaling during anaphase. We also show that Sid2 is crucial for the establishment of SIN asymmetry, indicating a positive-feedback loop is an important element of the SIN.  相似文献   

14.
The Schizosaccharomyces pombe septation initiation network (SIN) signals the onset of cell division from the spindle pole body (SPB) and is regulated by the small GTPase Spg1p. The localization of SIN components including Spg1p to the SPB is required for cytokinesis and is dependent on Sid4p, a constitutive resident of SPBs. However, a direct interaction between Sid4p and other members of the SIN has not been detected. To understand how Sid4p is linked to other SIN components, we have begun to characterize an S. pombe homolog of the Saccharomyces cerevisiae SPB protein Nud1p. We have determined that this S. pombe Nud1p homolog corresponds to Cdc11p, a previously uncharacterized SIN element. We report that Cdc11p is present constitutively at SPBs and that its function appears to be required for the localization of all other SIN components to SPBs with the exception of Sid4p. The Cdc11p C terminus localizes the protein to SPBs in a Sid4p-dependent manner, and we demonstrate a direct Cdc11p-Sid4p interaction. The N-terminus of Cdc11p is required for Spg1p binding to SPBs. Our studies indicate that Cdc11p provides a physical link between Sid4p and the Spg1p signaling pathway.  相似文献   

15.
The mitotic exit network (MEN) is a spindle pole body (SPB)–associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1–Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2–Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1–Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects.  相似文献   

16.
The septation initiation network (SIN) serves to coordinate cytokinesis with mitotic exit in the fission yeast Schizosaccharomyces pombe. SIN components Spg1 and Cdc7 together play a central role in regulating the onset of septation and cytokinesis. Spg1, a Ras-like GTPase, localizes to the spindle pole bodies (SPBs) throughout the cell cycle. It is converted to its GTP-bound (active) state during mitosis, only to become inactivated at one SPB during anaphase and at both SPBs as cells exit mitosis. Cdc7 functions as an effector kinase for Spg1, binding to Spg1 in its GTP-bound state, and therefore is present at both SPBs during mitosis and asymmetrically at only one during anaphase. Interestingly, the kinase activity of Cdc7 does not vary across the cell cycle, suggesting the possibility that Cdc7 kinase activity is independent of Spg1 binding. Consistent with this, we found that Cdc7 associates with Spg1 only during mitosis. To learn more about the essential role of Cdc7 kinase in the SIN and its regulation, we undertook a structure/function analysis and identified independent functional domains within Cdc7. We found that a region adjacent to the kinase domain is responsible for Spg1 association and identified an overlapping but distinct SPB localization domain. In addition Cdc7 associates with itself and exists as a dimer in vivo.  相似文献   

17.
Two Saccharomyces cerevisiae genes, CIN8 and KIP1 (a.k.a. CIN9), were identified by their requirement for normal chromosome segregation. Both genes encode polypeptides related to the heavy chain of the microtubule-based force-generating enzyme kinesin. Cin8p was found to be required for pole separation during mitotic spindle assembly at 37 degrees C, although overproduced Kip1p could substitute. At lower temperatures, the activity of at least one of these proteins was required for cell viability, indicating that they perform an essential but redundant function. Cin8p was observed to be a component of the mitotic spindle, colocalizing with the microtubules that lie between the poles. Taken together, these findings suggest that these proteins interact with spindle microtubules to produce an outwardly directed force acting upon the poles.  相似文献   

18.
During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)-dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit.  相似文献   

19.
W S Saunders  M A Hoyt 《Cell》1992,70(3):451-458
For S. cerevisiae cells, the assembly of a bipolar mitotic spindle requires the action of either Cin8p or Kip1p, gene products related to the mechanochemical enzyme kinesin. In this paper we demonstrate that the activity of either one of these proteins is also required following spindle assembly. When their function was eliminated, preanaphase bipolar spindles rapidly collapsed, with previously separated poles being drawn together. In contrast, anaphase spindles were apparently resistant to collapse. Deletion of kinesin-related KAR3 partially suppressed the phenotypes associated with loss of Cin8p/Kip1p function. Our findings suggest that the structure of the preanaphase bipolar spindle is maintained by counteracting forces produced by kinesin-related proteins.  相似文献   

20.
During meiosis, the centrosome/spindle pole body (SPB) must be regulated in a manner distinct from that of mitosis to achieve a specialized cell division that will produce gametes. In this paper, we demonstrate that several SPB components are localized to SPBs in a meiosis-specific manner in the fission yeast Schizosaccharomyces pombe. SPB components, such as Cut12, Pcp1, and Spo15, which stay on the SPB during the mitotic cell cycle, disassociate from the SPB during meiotic prophase and then return to the SPB immediately before the onset of meiosis I. Interestingly, the polo kinase Plo1, which normally localizes to the SPB during mitosis, is excluded from them in meiotic prophase, when meiosis-specific, horse-tail nuclear movement occurs. We found that exclusion of Plo1 during this period was essential to properly remodel SPBs, because artificial targeting of Plo1 to SPBs resulted in an overduplication of SPBs. We also found that the centrin Cdc31 was required for meiotic SPB remodeling. Thus Plo1 and a centrin play central roles in the meiotic SPB remodeling, which is essential for generating the proper number of meiotic SPBs and, thereby provide unique characteristics to meiotic divisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号