首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The granule proteases of human neutrophils are thought to be responsible for the connective tissue destruction associated with certain inflammatory diseases. Using a model system for the degradation of a macromolecular connective tissue substrate, purified neutrophil elastase and cathepsin G were both individually able to degrade cartilage matrix proteoglycan and this degradation was blocked by the appropriate specific inhibitors. Neutrophil granule lysate also produced cartilage matrix degradation but little inhibition of degradation occurred when either elastase or cathepsin G inhibitor was used alone. However, a combination of elastase and cathepsin G inhibitors each at 100 microM or each at 10 microM blocked cartilage matrix degradation by 89% +/- 1 and 65% +/- 9 (mean +/- SEM, n = 3), respectively. The magnitude of the cartilage degradation mediated by neutrophil lysate, and its sensitivity to specific inhibitors, was reproduced using purified elastase and cathepsin G at the concentrations at which they are present in neutrophil lysate. Human neutrophils stimulated with opsonized zymosan degraded cartilage matrix in a dose-dependent manner in the presence of serum antiproteases. Supernatants from stimulated neutrophils cultured in the presence of serum did not degrade cartilage matrix, indicating that neutrophil mediated degradation in the presence of serum was confined to the protected subjacent region between the inflammatory cell and the substratum. A combination of elastase and cathepsin G inhibitors each at 500 microM or each at 100 microM blocked subjacent cartilage matrix degradation by stimulated human neutrophils by 91% +/- 3 and 54% +/- 8 (mean +/- SEM, n = 5), respectively, whereas either the elastase or cathepsin G inhibitor alone was much less effective. These studies demonstrate that neutrophil-mediated cartilage matrix degradation is produced primarily by elastase and cathepsin G. Furthermore, these results support the hypothesis that inflammatory neutrophils form zones of close contact with substratum that exclude serum antiproteases and that this subjacent degradation of cartilage matrix by stimulated neutrophils can be blocked by a combination of synthetic elastase and cathepsin G inhibitors.  相似文献   

2.
The contribution of activated oxygen species to neutrophil-mediated degradation of basement membrane collagen was investigated. In preliminary experiments, pre-exposure of either albumin or glomerular basement membrane to neutrophil myeloperoxidase with H2O2 and chloride increased their susceptibility to proteolysis 2-3-fold. In the basement membrane model, neutrophils are stimulated by trapped immune complexes to adhere, produce oxidants and degranulate. Degradation, measured as the amount of hydroxyproline solubilised, was due to neutral proteinases, particularly elastase, and depended on cell number and the amount of proteinase released. Experiments with oxidant scavengers and inhibitors and with neutrophils from donors with chronic granulomatous disease or myeloperoxidase deficiency showed that oxidants did not affect degradation of the basement membrane when this was measured on a per cell basis. However, oxidative inactivation of the released granule enzymes occurred. Activities of elastase, beta-glucuronidase and lysozyme were 1.5-2-times higher in the presence of catalase, but were unaffected by superoxide dismutase or hydroxyl radical scavengers. Inactivation did not occur with chronic granulomatous disease or myeloperoxidase deficient neutrophils. When related to the activity of released elastase, or to other degranulation markers, collagen degradation was decreased in the presence of catalase, or with chronic granulomatous disease or myeloperoxidase deficient cells. This implies that the basement membrane was made more digestible by myeloperoxidase-derived oxidants, as occurred in the cell-free experiments. Taken together, the results indicate that neutrophil oxidants have two opposing effects. They increase the susceptibility of the collagen to proteolysis and inactivate the proteinases responsible.  相似文献   

3.
The course of chlorination in neutrophilic granulocytes has been shown. The process of 36Cl incorporation occurs during and after the engulfment of bacteria by granulocytes. Incorported radioactivity was found in insoluble fractions. The myeloperoxidase obtained from neutrophils catalyzes chlorination of protein (bovine serum albumin) and bacteria (Staphylococcus epidermidis) in the presence of hydrogen peroxide and chloride. The products of chlorination are insoluble. Chlorination in neutrophils is inhibited by the iodide and myeloperoxidase inhibitors azide and cyanide. A quantitative method of determination of biological chlorination in cells has been devised.  相似文献   

4.
The effects of leucocyte elastase on the tensile properties of adult human articular cartilage were examined in detail in 99 specimens from hip, knee and ankle joints in the age range 16–83 years. The results showed that elastase reduced the tensile stiffness of cartilage, both at low stress and at fracture. The tensile strength of cartilage was also considerably reduced by the action of elastase. Biochemical analysis of the incubation media, and the specimens, revealed that 90%, or more, of the proteoglycan was released from the cartilage, whilst the release of collagen was negligible. Leucocyte elastase is known to degrade the non-helical terminal peptides of cartilage collagen molecules and thereby disrupt the main intermolecular cross-links in collage fribrils. A previous study (Kempson, G.E., Tuke, M.A., Dingle, J.T., Barrett, A.J. and Horsfield, P.H. (1976) Biochim. Biophys. Acta 428, 741–760) showed the lack of effect of proteoglycan degradation alone on the tensile strength and stiffness of cartilage. The reduction in strength and stiffness recorded in the present study can, therefore, be attributed to the action of elastase on the collagen in cartilage and it emphasises the important of covalent intermolecular cross-links to the mechanical properties of collagen fibrils.  相似文献   

5.
Previous studies have established that mature neutrophils from the peritoneal cavity, blood, and bone marrow of beige (Chédiak-Higashi syndrome) mice essentially lack activities of two lysosomal proteinases: elastase and cathepsin G. There are, however, significant levels of each enzyme in early neutrophil precursors in bone marrow. In the present experiments, it was found that the addition of extracts from mature beige neutrophils to extracts of normal neutrophils or to purified human neutrophil elastase and cathepsin G resulted in a significant inhibition of elastase and cathepsin G G activities. 125I-Labeled human neutrophil elastase formed high molecular mass complexes at 64 and 52 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis when added to beige neutrophil extracts. The molecular masses of the inhibitor-125I-elastase complexes suggested that the molecular masses of the inhibitors are approximately 36 and 24 kDa, respectively. These results were confirmed by gel filtration on Superose 12 under nondenaturing conditions. Cathepsin G was inhibited only by the 36-kDa component. The inhibitors formed a covalent complex with the active sites of elastase and cathepsin G. No inhibitory activity was present in mature neutrophil extracts of genetically normal mice or in extracts of bone marrow of beige mice. These results thus represent an unusual example of an enzyme deficiency state caused by the presence of excess inhibitors. Inactivation of neutrophil elastase and cathepsin G in mature circulating and tissue neutrophils may contribute to the increased susceptibility of Chédiak-Higashi patients to infection.  相似文献   

6.
Transmigration of neutrophils across the endothelium occurs at the cell-cell junctions where the vascular endothelium cadherin (VE cadherin) is expressed. This adhesive receptor was previously demonstrated to be involved in the maintenance of endothelium integrity. We propose that neutrophil transmigration across the vascular endothelium goes in parallel with cleavage of VE cadherin by elastase and cathepsin G present on the surface of neutrophils. This hypothesis is supported by the following lines of evidence. 1) Proteolytic fragments of VE cadherin are released into the culture medium upon adhesion of neutrophils to endothelial cell monolayers; 2) conditioned culture medium, obtained after neutrophil adhesion to endothelial monolayers, cleaves the recombinantly expressed VE cadherin extracellular domain; 3) these cleavages are inhibited by inhibitors of elastase; 4) VE cadherin fragments produced by conditioned culture medium or by exogenously added elastase are identical as shown by N-terminal sequencing and mass spectrometry analysis; 5) both elastase- and cathepsin G-specific VE cadherin cleavage patterns are produced upon incubation with tumor necrosis factor alpha-stimulated and fixed neutrophils; 6) transendothelial permeability increases in vitro upon addition of either elastase or cathepsin G; and 7) neutrophil transmigration is reduced in vitro in the presence of elastase and cathepsin G inhibitors. Our results suggest that cleavage of VE cadherin by neutrophil surface-bound proteases induces formation of gaps through which neutrophils transmigrate.  相似文献   

7.
alpha(1)-proteinase inhibitor (API) is a potential therapeutic agent in all diseases in which elastase released by neutrophils has to be effectively neutralized. We ligated the cDNA of human API to the C-terminal section of an insulin-like growth factor II analogue (BOMIGF), known to be properly folded and secreted in insect cells using the baculovirus expression system. The BOMIGF-API chimera was recovered from the incubation medium of the infected cells. It shared the properties of both IGFs and API. It inhibited neutrophil elastase and formed SDS-stable complexes with the enzyme. The attachment of the large API protein to the C-terminal end of the 10 kDa IGF analogue did not destroy the IGF-mediated stimulation of thymidine incorporation into bovine fetal erythroid cells. We tested the capacity of the chimera to affect fibronectin-dependent TF-1 cell migration. BOMIGF-API significantly restored TF-1 cell migration in the presence of elastase, which is the enzyme of burn wound fluid most probably involved in fibronectin degradation. Some of the beneficial uses for this chimera may include all instances for which inhibition of elastase-mediated extracellular matrix destruction as well as stimulation of cell migration and proliferation are required for tissue repair.  相似文献   

8.
Neutrophil extracellular traps (NETs) have recently been described as an important innate defense mechanism that leads to immobilization and killing of invading pathogens. NETs have been identified in several species, but the mechanisms involved in NET formation and their role in infection have not been well determined yet. Here we show that upon in vitro stimulation with different immunostimulants of bacterial, fungal or viral origin, carp neutrophilic granulocytes rapidly release NET structures. We analyzed the composition of these structures and the kinetics of their formation by confocal microscopy, by quantifying the levels of extracellular DNA and the release of enzymes originating from neutrophilic granules: myeloperoxidase, neutrophil elastase and matrix metalloproteinase 9 (MMP-9). Profiles of NET release by carp neutrophils as well as their enzyme composition are stimulus- and time-dependent. This study moreover provides evidence for a stimulus-dependent selective requirement of reactive oxygen species in the process of NET formation. Collectively the results support an evolutionary conserved and strictly regulated mechanism of NET formation in teleost fish.  相似文献   

9.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   

10.
Neprilysin (neutral endopeptidase, enkephalinase, CALLA, CD10, NEP) is a regulatory Zn metallopeptidase expressed in the brush border membranes of the kidney and has been found in porcine chondrocytes and rat articular cartilage as well as other cell types and tissues. Although its function in cartilage is not currently known, previous observations of high levels of NEP enzymatic activity in the synovial fluid of arthritic patients and on the chondrocyte membranes of human osteoarthritic cartilage have led to the hypothesis that NEP is involved in the inflammation or degradation pathways in articular cartilage. Our study localized endogenous NEP to the membranes of mature bovine articular chondrocytes in a tissue explant model and demonstrated that the addition of soluble recombinant NEP (sNEP) to the culture medium of bovine cartilage explants leads to the degradation of aggrecan through the action of aggrecanase. A 6-day exposure to sNEP was necessary to initiate the degradation, suggesting that the chondrocytes were responding in a delayed manner to an altered composition of regulatory peptides. This NEP-induced degradation was completely inhibited by the NEP inhibitors thiorphan and phosphoramidon. These results suggest that NEP is present as a transmembrane enzyme on articular chondrocytes where it can cleave regulatory peptides and lead to the induction of aggrecanase.  相似文献   

11.
We previously showed that a metalloprotease and a serine protease mediate shedding of the TNF-R75 (75-kDa tumor necrosis factor receptor) in neutrophils. Here we show that elastase is the TNF-R75 solubilizing serine protease. Release of the TNF-R75 by resting cells was almost totally inhibited by the serine protease inhibitor diisopropylfluorophosphate (DFP), by two synthetic, chemically unrelated, elastase-specific inhibitors and by alpha1-protease inhibitor. Release after TNF or FMLP (N-formyl-L-methionyl-L-leucyl-L-phenylalanine) stimulation was blocked by DFP and a metalloprotease inhibitor used in combination. Supernatants from resting neutrophils contained a 28-kDa fragment of the receptor, compatible with that generated by elastase, whose appearance was inhibited by DFP. Upon FMLP stimulation, the release of 28-kDa and 40-kDa fragments was observed, which was inhibited by DFP and a metalloprotease inhibitor, respectively. We conclude that elastase is the TNF-R75 sheddase of resting neutrophils and that it contributes to shedding of this receptor in stimulated cells.  相似文献   

12.
Neutrophil-mediated injury to gut epithelium may lead to disruption of the epithelial barrier function with consequent organ dysfunction, but the mechanisms of this are incompletely characterized. Because the epithelial apical junctional complex, comprised of tight and adherens junctions, is responsible in part for this barrier function, we investigated the effects of neutrophil transmigration on these structures. Using a colonic epithelial cell line, we observed that neutrophils migrating across cell monolayers formed clusters that were associated with focal epithelial cell loss and the creation of circular defects within the monolayer. The loss of epithelial cells was partly attributable to neutrophil-derived proteases, likely elastase, because it was prevented by elastase inhibitors. Spatially delimited disruption of epithelial junctional complexes with focal loss of E-cadherin, beta-catenin, and zonula occludens 1 was observed adjacent to clusters of transmigrating neutrophils. During neutrophil transmigration, fragments of E-cadherin were released into the apical supernatant, and inhibitors of neutrophil elastase prevented this proteolytic degradation. Addition of purified leukocyte elastase also resulted in release of E-cadherin fragments, but only after opening of tight junctions. Taken together, these data demonstrate that neutrophil-derived proteases can mediate spatially delimited disruption of epithelial apical junctions during transmigration. These processes may contribute to epithelial loss and disruption of epithelial barrier function in inflammatory diseases.  相似文献   

13.
Peroxidase, alkaline phosphatase, acid phosphatase, β-glucuronidase, α-naphthyl acetate esterase (ANAE), α-naphthyl butyrate esterase, naphthol AS-D chloroacetate esterase, acetyl-L-tyrosine-α-naphthyl esterase (ATNE), tosyl-L-lysine-α-naphthyl esterase (TLNE) and periodic acid-Schiff (PAS) were studied in 17 species of elasmobranchs in which granulocytes had previously been identified at the ultrastructural level.
Eosinophils, eosinophilic and neutrophilic granulocytes contained variable acid phosphatase, esterases and PAS, but they were strongest in neutrophilic granulocytes; particularly ANAE. Esterases were released into surrounding plasma and therefore probably function as ectoenzymes. In eosinophils and some neutrophilic granulocytes there were indications of weak peroxidase, but this could not be conclusively demonstrated. Alkaline phosphatase was diffuse between granules in some eosinophils of Pavoraja , and (β-glucuronidase was diffuse in neutrophilic granulocytes of Etmopterus baxteri , otherwise granulocytes lacked these enzymes. Neutrophilic granulocytes stained moderately to strongly for ATNE and weakly and inconsistently for TLNE in Squalus acanthias and Dalatias licha . with a similar reaction in granular lymphocytoid and thrombocytoid cells of Galeorhinus ausiralis and Raja nasuta . The enzyme composition of these granulocytes is discussed.  相似文献   

14.
In the present work responses of carp (Cyprinus carpio) head kidney-derived neutrophils to the blood parasite T. borreli, and the consequences of these responses for parasite survival and other host response mechanisms, were studied. In co-cultures of head kidney leucocytes (HKL) with viable and lysed T. borreli a prominent shape change of neutrophilic granulocytes towards increased size and complexity was observed. In addition, the longevity of neutrophils in vitro was prolonged in the presence of T. borreli antigens. In these cultures, neutrophils also exhibited an increased phagocytosis activity. An up regulation of the production of nitric oxide (NO) and reactive oxygen species (ROS) was observed in T. borreli- and mitogen-stimulated HKL cultures. However, addition of live, fluorescence-labelledT. borreli to previously stimulated HKL cultures, revealed neither killing nor phagocytosis of the parasite by activated neutrophils. Moreover, viable T. borreli, when added to HKL cultures of infected carp, reduced their phagocytosis activity and NO production. Supernatants of co-cultures between T. borreli and HKL also contained mediators, which suppressed a mitogen-induced proliferative response of peripheral blood leucocytes (PBL) in vitro. Thus, while T. borreli itself appeared not to be sensitive to responses of activated neutrophils, the flagellates interferes with the production of immunomodulatory signals of these cells, probably resulting in a partial immunosuppression, which may favour the parasite development in vivo.  相似文献   

15.
Assays of several proteases, incorporating guanidinium chloride extracts of human femoral head cartilage and intervertebral disc, demonstrated that both tissues contain inhibitors of certain serine proteases. Trypsin, chymotrypsin and a granule extract of human polymorphonuclear leukocytes containing elastase and cathepsin G activities, were inhibited by low molecular weight fractions prepared by Sephadex G-75 chromatography. Using a radioassay, it was further shown that these fractions inhibit proteolysis of cartilage proteoglycan. The inhibitor in intervertebral disc is concentrated in the nucleus pulposus, with a decreasing gradient to the periphery of the annulus fibrosus. It is proposed that these inhibitors confer at least partial protection against pathological proteolysis of the proteoglycans in human articular cartilage and nucleus pulposus.  相似文献   

16.
Nucleotides are released during vascular injury from activated platelets and broken cells, which could stimulate human neutrophils. In this study, we characterized the P2Y receptors and investigated the functional effects of extracellular nucleotides on human neutrophils. Pharmacological characterization using selective agonists and pertussis toxin revealed that human neutrophils express only functional P2Y2 receptors. However, P2Y2 receptor agonists ATP or uridine triphosphate (UTP) caused intracellular Ca2+ increases in isolated human neutrophils with an EC50 of 1 µM but failed to cause release of primary granules from human neutrophils. ATP and UTP were equally potent in causing elastase release from human neutrophils in the presence of exogenous soluble fibrinogen, whereas ADP and UDP were without effect. We investigated whether nucleotides depend on generated arachidonic acid metabolites to cause degranulation. However, phenidone and MK-886, inhibitors of the 5-lipoxygenase pathway, failed to block nucleotide-induced intracellular calcium mobilization and elastase release. ATP and UTP caused activation of p38 MAPK and ERK1/2 in human neutrophils. In addition, the inhibitors of the MAPK pathway, SB-203580 and U-0126, inhibited nucleotide-induced elastase release. We conclude that fibrinogen is required for nucleotide-induced primary granule release from human neutrophils through the P2Y2 receptor without a role for arachidonic acid metabolites. Both ERK1/2 and p38 MAPK play an important role in nucleotide-induced primary granule release from human neutrophils. elastase release; fibrinogen; extracellular nucleotides; uridine triphosphate; adenosine triphosphate  相似文献   

17.
Three cathodically migrating protein protease isoinhibitors were isolated from the granule-rich fraction of equine neutrophilic granulocytes by means of FPLC chromatography, in addition to two previously described anodically migrating inhibitors. The three isoinhibitors had an identical enzyme specificity which was equal to the two previously described isoinhibitors; they inhibited exclusively proteinase K and subtilisin. The inhibitors retained their activity between pH 1 and 12. They also were heat stable at 100 degrees C for 20 min. Neither the biological function of isoinhibitors nor the fundamental role of granular protease inhibitors of such narrow and peculiar enzyme specificity are known.  相似文献   

18.
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate.  相似文献   

19.
Summary Mandibular condylar cartilage acts as both articular and growth plate cartilage during growth, and then becomes articular cartilage after growth is complete. Cartilaginous extracellular matrix is remodeled continuously via a combination of production, degradation by matrix metalloproteinases (MMPs), and inhibition of MMP activity by tissue inhibitors of metalloproteinases (TIMPs). This study attempted to clarify the age-related changes in the mRNA expression patterns of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 in mandibular condylar cartilage in comparison to tibial growth plate and articular cartilage using an in situ hybridization method in growing and adult rats. MMP-2 and MMP-9 were expressed in a wide range of condylar cartilage cells during growth, and their expression domains became limited to mature chondrocytes in adults. The patterns of TIMP-1 and TIMP-2 expression were similar to those of MMP-2 and MMP-9 during growth, and were maintained until adulthood. TIMP-3 was localized to hypertrophic chondrocytes throughout the growth stage. Therefore, we concluded that TIMP-1 and TIMP-2 were general inhibitors of MMP-2 and MMP-9 in condylar cartilage, while TIMP-3 regulates the collagenolytic degradation of the hypertrophic cartilage matrix.  相似文献   

20.
Monoclonal antibodies were raised that specifically recognize the NH2-terminal neoepitope sequence present in link protein cleavage products derived from stromelysin-degraded proteoglycan aggregate. Competitive enzyme-linked immunosorbent assay, using synthetic peptides as inhibitors, showed that one of these antibodies (CH-3) required, for antibody recognition, the free NH2-terminal amino acid isoleucine (residue 17 of the intact protein) in the sequence NH2-IQAENG at the stromelysin cleavage site of link protein 3. Human proteoglycan aggregate was digested with recombinant human stromelysin, bovine chymotrypsin, bovine trypsin, and porcine elastase, and their respective link protein degradation products were tested for immunoreactivity with antibody CH-3. Only stromelysin- and chymotrypsin-generated link protein 3 were recognized by antibody CH-3. Both of these enzymes generate link protein NH2 termini with the sequence 17IQAENG. . .; hence these studies indicated that monoclonal antibody CH-3 recognized this neoepitope sequence in only specific proteolytically modified link protein molecules. Since the occurrence of link protein 3 increases with aging, the incidence of CH-3 epitope in proteoglycans isolated from human knee articular cartilage of individuals of different ages was investigated. The prevalence of CH-3 epitope was found to be highest in newborn and adolescent articular cartilage samples. However, little CH-3 epitope was detected in older adult cartilage, although considerably more link protein 3 was present in these samples. These results suggest that additional proteolytic agents are responsible for the increased occurrence of link protein degradation products with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号