首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

2.
Soil microorganisms were not inhibited by mixing oily sludge in soil up to 8.7% (w/w) oil (15% sludge). Adding NH 4 + and phosphate increased microbial activity. Microbial activity was also affected by seasonal variation. Thermotolerant microorganisms were more predominant during the summer. After 29 months, 72%, 84%, and 83% of the soil was degraded in fertilized soils dosed with 2.9, 5.8 and 8.7% oil, respectively.  相似文献   

3.
3 次连续重复提取DNA 能较好反映土壤微生物丰度   总被引:6,自引:1,他引:6  
【目的】研究同一个土壤需要反复提取几次才能在最大程度上反映土壤微生物的丰度,探讨风干土壤代替新鲜土壤用于微生物丰度研究的可行性。【方法】针对两种理化性质具有较大差异的旱地和稻田新鲜土壤及其风干土壤,分别对土壤微生物进行5次连续裂解提取DNA。通过实时荧光定量PCR技术分析连续反复提取对土壤古菌和细菌16S rRNA gene数量、氨氧化古菌和细菌功能基因amoA数量的影响。【结果】3次连续提取DNA占5次提取DNA总量的76%以上,氨氧化古菌、氨氧化细菌、古菌和细菌4类微生物的3次连续提取最低回收率为77.5%;与新鲜土壤相比,风干处理导致氨氧化古菌、氨氧化细菌、古菌、细菌的数量分别降低84.3%、81.2%、12.5%和90.3%,然而,2种土壤风干过程中主要微生物类群的数量变化规律基本一致,表明土壤微生物对风干处理的响应可能受土壤类型的影响较小。【结论】土壤微生物连续3次裂解能较好反映微生物丰度。与新鲜土壤相比,风干过程显著降低了土壤微生物丰度,然而,通过风干土壤中微生物丰度的变化趋势反映新鲜土壤中微生物数量变化规律具有一定的可行性。  相似文献   

4.
S. Okano 《Plant and Soil》1990,129(2):219-225
A dwarf bamboo-type grassland soil (Thick High-humic Andosol) was nitrogen-limited for grass despite the presence of a considerable amount of microbial biomass N. By either treatments of air-drying and subsequent heating, the content of mineral N in the soil was increased by 3.7 g N and 11.7 g N m-2, respectively, after a 55-day incubation period. The efficiency of mineralized N for growth of orchardgrass was compared with nitrate-N added just before cultivation. The dry matter content of the grass increased from 81.7 g (control) to 169 g and to 337 g m-2 in the dried and in the heated soils, respectively, when N application was omitted. Of the mineral N released by air-drying and heating of the soil, 84% and 77% were absorbed by the grass, and 30% and 20% was assumed to be derived from microbial biomass, respectively. In contrast the grass apparently absorbed 54–56% of the 5 g nitrate-N m-2 added to the control and the air-dried soils. It was also noted that fungal biomass N had decreased by 1.5–1.9 g m-2 in the control soil after addition of 10 g nitrate-N m-2.  相似文献   

5.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

6.
Tu C  Koenning SR  Hu S 《Microbial ecology》2003,46(1):134-144
Obligate root-parasitic nematodes can affect soil microbes positively by enhancing C and nutrient leakage from roots but negatively by restricting total root growth. However, it is unclear how the resulting changes in C availability affect soil microbial activities and N cycling. In a microplot experiment, effects of root-parasitic reniform nematodes (Rotylenchulus reniformis) on soil microbial biomass and activities were examined in six different soils planted with cotton. Rotylenchulus reniformis was introduced at 900 nematodes kg–1 soil in May 2000 prior to seeding cotton. In 2001, soil samples were collected in May before cotton was seeded and in November at the final harvest. Extractable C and N were consistently higher in the R. reniformis treatments than in the non-nematode controls across the six different soils. Nematode inoculation significantly reduced microbial biomass C, but increased microbial biomass N, leading to marked decreases in microbial biomass C:N ratios. Soil microbial respiration and net N mineralization rates were also consistently higher in the nematode treatments than in the controls. However, soil types did not have a significant impact on the effects of nematodes on these microbial parameters. These findings indicate that nematode infection of plant roots may enhance microbial activities and the turnover of soil microbial biomass, facilitating soil N cycling. The present study provides the first evidence about the direct role of root-feeding nematodes in enhancing soil N mineralization.  相似文献   

7.
Summary The effect of phosphate addition on the phosphate potential of suspensions of three contrasting soils was investigated. The results showed that even shaking the soil suspension for 14 days was insufficient to reach equilibrium in the soil: solution system. Increasing the phosphate additions to the soils resulted in decreasing phosphate potentials. Furthermore, on addition of phosphate to the soils, the solubility data did not conform to those anticipated on the basis of phosphate minerals expected to be present in the soils. The results indicated that the phosphate concentration in the soil-solution was controlled by an adsorption type of mechanism.  相似文献   

8.
Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m−1 for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field.  相似文献   

9.
Lin R Y  Rong H  Zhou J J  Yu C P  Ye C Y  Chen L S  Lin W X 《农业工程》2007,27(9):3644-3654
Field performance of rice allelopathic potential is indirectly regulated by the microflora in the rhizosphere. The present study aimed to investigate the dynamics of microbial populations and their functional diversities in the seedling rhizospheres of rice cultivars with varied allelopathic activities by employing agar plate bioassay, fumigation and BIOLOG analysis. Rice cultivars significantly affected the microbial carbon content in their associated rhizospheric soil. The microbial carbon contents were ranked in a decreasing order as Iguape Cateto (441.0 mg·kg–1) > IAC47 (389.7 mg·kg–1) > PI312777 (333.2 mg·kg–1) > Lemont (283.8 mg·kg–1) with the nil-rice control soil of 129.3 mg·kg–1. Similarly, the respiration rate of the soils was 1.404, 1.019, 0.671 and 0.488 μgC·g–1· h–1 for PI312777, Iguape Cateto, IAC47 and Lemont, respectively. The respiration rate was only 0.304 μ gC·g–1·h–1 for the control soil. The microbial flora in the rhizospheric soil of different rice cultivars was dominated by bacteria (58.4%–65.6%), followed by actinomycete (32.2%–39.4%) and fungi (2.2%–2.8%). BIOLOG analysis showed that the value of Average Well Color Development (AWCD) differed significantly among rice cultivars. It was always the highest in the rhizospheric soil of the strongly allelopathic rice cv. PI312777, and the lowest in the rhizospheric soil of the poorly allelopathic rice cv. Lemont. The AWCD value reached the maximum in all the sampled soils after 144 hours of incubation. The AWCD values from the rhizospheric soils of PI312777, IAC47, Iguape Cateto and Lemont were 1.89, 1.79, 1.60 and 1.43 times higher than that of the control soil. Principal Component Analysis (PCA) identified 3 principal component factors (PCF) in relation to carbon sources, accounting for 70.1%, 11.3% and 7.0% of the variation, respectively. 19 categories of carbon sources were significantly positively correlated to the 3 principal components. Phenolic acids, carbohydrates, amino acids and amides were significantly correlated to the principal component 1, phenolic acids, carbohydrates and fatty acids to the principal component 2, and carbohydrates and hydroxylic acids to the principal component 3. Amino acids and amides were the two main carbon sources separating the 3 principal component factors. In addition, the total microbial population in the rhizospheric soil was significantly positively correlated with AWCD, microbial biomass carbon, microbial respiration and Shannon index. There was a significantly positive correlation between the total microbial population and the inhibition rate (IR) on the root length of lettuce owing to the different allelopathic activities of the rice cultivars. These results suggest that changes in microbial population, activity and functional diversity in the rhizospheres are highly cultivar-dependent. These changes might play an important role in governing the rice allelopathic activity in the field.  相似文献   

10.
Identifying soil microbial responses to anthropogenically driven environmental changes is critically important as concerns intensify over the potential degradation of ecosystem function. We assessed the effects of elevated atmospheric CO2 on microbial carbon (C) and nitrogen (N) cycling in Mojave Desert soils using extracellular enzyme activities (EEAs), community‐level physiological profiles (CLPPs), and gross N transformation rates. Soils were collected from unvegetated interspaces between plants and under the dominant shrub (Larrea tridentata) during the 2004–2005 growing season, an above‐average rainfall year. Because most measured variables responded strongly to soil water availability, all significant effects of soil water content were used as covariates to remove potential confounding effects of water availability on microbial responses to experimental treatment effects of cover type, CO2, and sampling date. Microbial C and N activities were lower in interspace soils compared with soils under Larrea, and responses to date and CO2 treatments were cover specific. Over the growing season, EEAs involved in cellulose (cellobiohydrolase) and orthophosphate (alkaline phosphatase) degradation decreased under ambient CO2, but increased under elevated CO2. Microbial C use and substrate use diversity in CLPPs decreased over time, and elevated CO2 positively affected both. Elevated CO2 also altered microbial C use patterns, suggesting changes in the quantity and/or quality of soil C inputs. In contrast, microbial biomass N was higher in interspace soils than soils under Larrea, and was lower in soils exposed to elevated CO2. Gross rates of NH4+ transformations increased over the growing season, and late‐season NH4+ fluxes were negatively affected by elevated CO2. Gross NO3 fluxes decreased over time, with early season interspace soils positively affected by elevated CO2. General increases in microbial activities under elevated CO2 are likely attributable to greater microbial biomass in interspace soils, and to increased microbial turnover rates and/or metabolic levels rather than pool size in soils under Larrea. Because soil water content and plant cover type dominates microbial C and N responses to CO2, the ability of desert landscapes to mitigate or intensify the impacts of global change will ultimately depend on how changes in precipitation and increasing atmospheric CO2 shift the spatial distribution of Mojave Desert plant communities.  相似文献   

11.
盐碱地柠条根围土中黑曲霉的分离鉴定及解磷能力测定   总被引:1,自引:0,他引:1  
张丽珍  樊晶晶  牛伟  李涛  吴荣海  金益杰  鹿茸 《生态学报》2011,31(24):7571-7578
在盐碱滩地的改良过程中,柠条具有提升土壤供氮、供磷、供钾的潜力.以盐碱滩地上建植的柠条灌木林为研究对象,以柠条根围土壤为培养基质,采用无机磷培养基筛选,用平板溶菌圈法分离获得1株具有溶磷能力的真菌.将测得的ITS基因序列在NCBI上进行同源性检索,结果表明,所测序列与黑曲霉(Aspergillus niger)同源性为100%.综合形态特征和ITS基因序列同源性两方面分析,该菌株鉴定为黑曲霉(Aspergillus niger).168h连续监测无机磷培养液pH值、速效磷含量、菌丝重量和菌体吸磷量,研究该菌株的解磷能力.研究结果表明:随着培养时间的延长,培养液pH值从7.0下降到2.0左右,溶液中速效磷含量逐渐增加到4.7 mg,菌体自身吸磷量由5.4 mg下降到0.5mg,在36-48h后各项指标达到稳定状态.可见,黑曲霉菌体可以有效利用难溶性磷源,并将其转化成可被植物吸收利用的有效磷.  相似文献   

12.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

13.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

14.
S. Scheu 《Oecologia》1990,84(3):351-358
Summary Microbial biomass, nutrient (N and P) status, and carbon and nutrient limitation of the microflora were investigated in soils from five different sites (field, 5-, 12-, and about 50-year-old fallow, beechwood), which represent different stages of a secondary succession from a wheat field to the climax ecosystem of a beechwood on limestone. In addition, the effect of faeces production by the substrate feeding earthworm species Octolasion lacteum (Örley) on the nutrient status of the soil microflora of these sites was studied. Humus had accumulated in the soil of the third fallow site, with an enhanced biomass of microflora. However, in the beechwood soil, which had the highest humus content, microbial biomass was lower than in the soil of the third fallow site and similar to that of the field and the two younger fallow sites. In general, soil microbial biomass was little affected by the passage of soil through the gut of O. lacteum. The soil microflora of the field, the 5-, 12-, and about 50-year-old fallow was limited by carbon, whereas in the beechwood soil phosphorus limited microbial growth. NItrogen availability to the soil microflora was low in the two younger fallow sites and high in the field and the third fallow. In the beechwood soil nitrogen supply did not affect microbial carbon utilization. Application of phosphorus stimulated glucose mineralization in the soil of the field, the third fallow, and the beechwood, but not in the two younger fallow sites. Therefor, the nutrient status of the soil microflora seems to have changed during secondary succession: presumably, during the first phase the availability of nitrogen decreased, whereas during the second phase microbial phosphorus supply became more important, which resulted in phosphorus limitation of the soil microflora in the climax ecosystem. The passage of soil through the gut of O. lacteum caused an alteration in the microbial nutrient status. Generally, microbial growth in earthworm casts was limited by carbon. The relative effect of the gut passage of the soils on microbial carbon utilization seems to increase during succession. Therefore, the effect of decomposer invertebrates on microbial nutrient supply seems to increase during secondary succession. In general, nitrogen did not limit microbial carbon utilization in earthworm casts. Phosphorus requirements of the soil microflora were lowered by the gut passage of the soil of the third fallow site and the beechwood, which indicates an increased phosphorus supply in earthworm casts. Howerver, this additional supply was not sufficient to enable optimal carbon utilization by the soil microflora. The results indicate that the effect of decomposer invertebrates on the soil microflora depends on the nutrient status of the ecosystem.  相似文献   

15.
Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on the mobilization of dissolved organic carbon (DOC) and nitrate (NO3 ?) in soils over the course of 2 years. During a winter with a relatively thin snowpack, soils at lower elevation sites experienced greater freezing and especially variable freeze/thaw cycles, which in turn led to greater leaching of DOC from the organic horizon during the following growing season. In contrast to several previous field manipulation studies, we did not find changes in soil solution NO3 ? concentrations related to soil freezing variables. Our results are consistent with a soil matrix disturbance from freezing and thawing which increases leachable C. These results build upon previous laboratory experiments and field manipulations that found differing responses of DOC and NO3 ? following soil freezing, suggesting that mobilization of labile C may suppress NO3 ? losses through microbial immobilization of N. This research highlights the importance of studying natural variation in winter climate and soil freezing and how they impact soil C and N retention, with implications for surface water runoff quality.  相似文献   

16.
Measurement of microbial biomass phosphorus in rhizosphere soil   总被引:1,自引:0,他引:1  
32P-labelled monocalcium phosphate solution was supplied by point injection to the root system of wheat plants grown in soil cores in a controlled environment. There was no detectable incorporation of32P into organic P fractions in the soil remaining after roots were removed, confirming field observations. The techniques used to measure organic P (including biomass P) could detect an incorporation of32P into soil microbial biomass equivalent to 0.3 μgP.g?1 soil, compared to a total soil biomass P content estimated to be ca. 6.5 μgP.g?1 soil. The limited incorporation of the added P into microbial biomass in the root-free soil may be due partly to a limited diffusion of32P into the non-rhizosphere soil and partly to the removal of32P-labelled microbial biomass adhering to or in very close association with the root surface. it is proposed that in studies of soil nutrient status, total soil biomass P (roots + soil flora + microfauna) should be measured, rather than attempting an estimate of microbial P. A sequential extraction procedure using a single soil sample, where a biocide is added to the extracting solution, is proposed as an alternative to the conventional procedure for measuring soil biomass P where two soil samples, one treated with a biocide, are extracted simultaneously.  相似文献   

17.
Incubation experiments were carried out to evaluate the feasibility of extracting phosphorus from soil by embedding iron oxide-impregnanted filter paper strips (Pi strips) in soils having a wide range in pH, texture, and extractable-P contents. Under flooded conditions, the amount of P extracted by the Pi strips increased with the period of submergence and embedding time of the Pi strips. Under unsaturated conditions, the Pi strips were found to extract P from soils over a wide range in moisture conditions; however, keeping the soil at moisture level between saturation and field capacity was found to result in maximal sorption of P by the strips. An embedding time of 16 h was found to be adequate.Phosphorus extracted by embedding Pi strips in soil columns for 16 h at field capacity moisture level correlated significantly with P extracted by shaking the soil with 0.01 M CaCl2 solution and a Pi strip for 16 h in the laboratory (r=0.94**). The P extracted by embedding Pi strips correlated best with Bray 1 P in acid soils (r=0.97**) and with Olsen P in alkaline and calcareous soils (r=0.96**). The results of the studies demonstrate the feasibility of developing a nondestructive method of monitoring changes in plant-available P in situ under field conditions.  相似文献   

18.
Changes in plant inputs under changing atmospheric CO2 can be expected to alter the size and/or functional characteristics of soil microbial communities which can determine whether soils are a C sink or source. Stable isotope probing was used to trace autotrophically fixed 13C into phospholipid fatty acid (PLFA) biomarkers in Mojave Desert soils planted with the desert shrub, Larrea tridentata. Seedlings were pulse‐labeled with 13CO2 under ambient and elevated CO2 in controlled environmental growth chambers. The label was chased into the soil by extracting soil PLFAs after labeling at Days 0, 2, 10, 24, and 49. Eighteen of 29 PLFAs identified showed 13C enrichment relative to nonlabeled control soils. Patterns of PLFA enrichment varied temporally and were similar for various PLFAs found within a microbial functional group. Enrichment of PLFA 13C generally occurred within the first 2 days in general and fungal biomarkers, followed by increasingly greater enrichment in bacterial biomarkers as the study progressed (Gram‐negative, Gram‐positive, actinobacteria). While treatment CO2 level did not affect total PLFA‐C concentrations, microbial functional group abundances and distribution responded to treatment CO2 level and these shifts persisted throughout the study. Specifically, ratios of bacterial‐to‐total PLFA‐C decreased and fungal‐to‐bacterial PLFA‐C increased under elevated CO2 compared with ambient conditions. Differences in the timing of 13C incorporation into lipid biomarkers coupled with changes in microbial functional groups indicate that microbial community characteristics in Mojave Desert soils have shifted in response to long‐term exposure to increased atmospheric CO2.  相似文献   

19.
Seedlings of Eucalyptus regnans (mountain ash) grow poorly in undried forest soil, where they develop purple coloration in the foliage, but their growth is markedly improved when forest soil has been air dried. Whether this growth promotion is purely due to improved nutrient status of the soil, as a result of air drying, was investigated. In several pot experiments, E. regnans seedlings were grown (i) in air-dried and undried forest soil with addition of different levels of complete fertiliser, (ii) in air-dried or undried soil diluted to different extents with sand, or (iii) in undried soil mixed with different amounts of air-dried soil. Seedling dry weight, P content and incidence of ectomycorrhizal root tips were determined.In all experiments, the dry weights of seedlings were 3–6 times greater in 100% air-dried soil than in 100% undried soil. Fertiliser application resulted in a significant increase in dry weight of seedlings in both air-dried and undried soil, but the dry weights in air-dried soil were always significantly greater than those in undried soil at the same level of fertiliser application. Even at the highest level of fertiliser application, the growth difference between seedlings in air-dried and undried soil remained. When air-dried soil was diluted with sand, there was a significant reduction in seedling dry weight only when soil was diluted to 20% or less (air-dried soil:total mix). Conversly, when air-dried soil was mixed with undried soil, there was a proportional decrease in seedling dry weight with increasing amounts of undried soil. In all experiments, the dominant ectomycorrhizal morphotypes in 100% air-dried soil were different from those in undried soil. Fertilisation and dilution of air-dried and undried soil did not result in a reduction in the overall incidence of ectomycorrhizal root tips, although the frequency of occurrence of different ectomycorrhizal morphotypes was affected.It is concluded that the growth difference between seedlings in air-dried and undried forest soils is not due solely to differences in the direct availability of nutrients in the soils, and different ectomycorrhizae may indirectly affect nutrient availability to the plant.  相似文献   

20.
The global changes in rainfall frequency and quantity have subjected arid and semi-arid regions to long periods of drought. As this phenomenon corresponds to increasing trend of water shortage, the use of treated wastewater (TWW) has been suggested as an alternative for irrigation of agricultural crops in these areas. The aim of the study was to investigate the short- and middle-term effects of TWW irrigation on the soil microbial activities and organic carbon content. The microbial community activity was measured every 1–3 months for 4 years in a persimmon (Diospyros kaki) orchard. These activities were used here as an indicator for the soil health. The hydrolysis activity (detected by fluorescein diacetate hydrolysis (FDA) assay) increased during the irrigation season and was significantly higher in soils irrigated with TWW compared to those irrigated with freshwater (FW). This activity was also negatively correlated with dissolved organic carbon (DOC) concentrations during the irrigation season, suggesting that the community degraded the DOC in the soils regardless of its origin. The irrigation season was also characterized by an increase in nitrification potential in both TWW- and FW-irrigated soils, which coincided with high concentrations of nitrate (50 mg kg−1 soil). Overall, there was an increase in all measured activities during the irrigation season, and they were higher in the TWW soils. However, it appears that after each irrigation season, the potential activity of the community returned to levels similar to or even slightly lower than those of FW-irrigated soil during the wet season, suggesting that the periodic irrigation did not significantly change the soil microbial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号