首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Nitric oxide (NO), generated by NO synthases (NOSs), has multifarious roles in signal transduction. Reactive oxygen species (ROS), generated by ubiquitous NADPH oxidases (NOXs), also participate in cellular signaling. However, the coordination of signals conveyed by NO and ROS is poorly understood. We show that the small GTPase Rac, a component of some NOXs, also interacts with and regulates the constitutively-expressed NOSs. Cellular NO and O(2)(-) production increase or decrease together following activation or inhibition of Rac, and Rac inhibition reveals transduction mechanisms that depend upon NO (vasodilation), ROS (actin polymerization) or both (cytoskeletal organization). Thus, signaling by NO and ROS may be coordinated through a common control element.  相似文献   

2.
Reconstituted discoidal high-density lipoprotein (rHDL) has potent vascular protective actions. Native HDL suppresses cellular generation of reactive oxygen species, whereas this antioxidant effect of rHDL is less clear. This study examined the effects of rHDL on NADPH oxidase, a major source of cellular superoxide generation, in both leukocytes and human umbilical vein endothelial cells. Superoxide was measured with lucigenin-enhanced chemiluminescence. Expression of NADPH oxidase sub-units was determined by real-time PCR. Pre-treatment of HL-60 cells with rHDL (10 and 25 µM) for 1 h significantly reduced phorbol 12-myristate 13-acetate-stimulated superoxide production. Treatment with rHDL for up to 24 h did not change the mRNA expression of NADPH oxidase sub-units. In HL-60 cells, depletion of cholesterol from the plasma membrane by methyl-β-cyclodextrin mimicked the effect of rHDL, whereas cholesterol repletion blunted the effects of rHDL. Treatment with rHDL induced disruption of the lipid raft structures and blunted PMA-induced redistribution of p47phox into lipid rafts. In contrast, treatment of endothelial cells with rHDL for up to 18 h had no effect on either basal or tumour necrosis factor-α-stimulated NADPH oxidase activity, but markedly suppressed the cytokine-induced expression of proinflammatory adhesion molecules. The results suggest that rHDL inhibits NADPH oxidase activation in leukocytes, probably by interrupting the assembly of NADPH oxidase sub-units at the lipid rafts. This effect may contribute to the vascular protective actions of rHDL against inflammation-mediated oxidative damage.  相似文献   

3.
Like macrophages, microglia are functionally polarized into different phenotypic activation states, referred as classical and alternative. The balance of the two phenotypes may be critical to ensure proper brain homeostasis, and may be altered in brain pathological states, such as Alzheimer's disease. We investigated the role of NADPH oxidase in microglial activation state using p47(phox) and gp91(phox) -deficient mice as well as apocynin, a NADPH oxidase inhibitor during neuroinflammation induced by an intracerebroventricular injection of LPS or Aβ????. We showed that NADPH oxidase plays a critical role in the modulation of microglial phenotype and subsequent inflammatory response. We demonstrated that inhibition of NADPH oxidase or gene deletion of its functional p47(phox) subunit switched microglial activation from a classical to an alternative state in response to an inflammatory challenge. Moreover, we showed a shift in redox state towards an oxidized milieu and that subpopulations of microglia retain their detrimental phenotype in Alzheimer's disease brains. Microglia can change their activation phenotype depending on NADPH oxidase-dependent redox state of microenvironment. Inhibition of NADPH oxidase represents a promising neuroprotective approach to reduce oxidative stress and modulate microglial phenotype towards an alternative state.  相似文献   

4.
Homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus (HSV) glycoprotein D (gD) for herpes virus entry mediator (HVEM; TR2) (LIGHT), a ligand of herpes virus entry mediator (HVEM), increased reactive oxygen species (ROS) and enhanced the destruction of bacteria in human monocytes. In this study, rhLIGHT was found to increase the expression of the chemokine receptors, chemokine receptor 1 (CCR1) and CCR2, as well as to accelerate the migration activity of human monocytes. Additionally, rhLIGHT was found to increase ROS via NADPH oxidase p47phox phosphorylation, which was found to be required for LIGHT-induced NF-κB activation, CCR1 and CCR2 expression, migration and IL-8 and TNF-α production. Taken together, these results indicate that NADPH oxidase activation is required for rhLIGHT-induced migration in human monocytes.  相似文献   

5.
目的:研究NADPH氧化酶抑制剂apocynin对力竭运动大鼠运动性蛋白尿产生的影响及其机制。方法:32只SD雄性大鼠随机分为安静对照组(C组)、对照+药物组(CA组)、力竭运动组(E组)、力竭运动+药物组(EA组)。药物注射按10 mg/kg体重,每天一次,连续3 d,并在末次药物注射1 h后进行一次性跑台力竭运动。测定运动后尿UP、血液BUN水平、肾脏ROS浓度、NOS活性、NOS与3-NT蛋白含量。结果:结果显示,E组UP、肾脏ROS、iNOS含量及活性、3-NT明显升高,而EA组的这些指标与C组相比无显著性差异。结论:力竭运动可明显增加肾组织NADPH氧化酶活性,从而产生大量的ROS,后者可迅速地与由肾脏iNOS催化生成的NO反应,产生过量的ONOO-,诱发运动性蛋白尿的生成。  相似文献   

6.
The photorespiratory enzyme glycolate oxidase (GOX) was found to be involved in nonhost resistance by regulating plant defense responses through the production of H2O2. Silencing of a gene encoding NADPH oxidase (AtRBOHD) in the gox mutants did not further increase susceptibility to a nonhost pathogen, P. syringae pv tabaci, although it caused an increase in bacterial growth in the Atgox1 and Atgox3 mutant backgrounds. In order to confirm this finding, we created double homozygous knockouts AtrbohD x Atgox1 and AtrbohD x Atgox3 to evaluate symptom development and bacterial growth. Here we show that there is no additive effect of disease symptoms or bacterial growth in the AtrbohD x Atgox1 and AtrbohD x Atgox3 double mutants when compared with individual mutants. Slight additive effect observed previously upon silencing of AtRBOHD in Atgox1 and Atgox3 mutants was most likely due to cross-silencing of AtRBOHF. These results further prove that GOX plays a role in nonhost resistance independent of NADPH oxidase.  相似文献   

7.
Although glial cells play a major role in the pathogenesis of many neurological diseases by exacerbating neuronal and non-neuronal cell death, the mechanisms involved are unclear. We examined the effects of microglia-(MCM) or astrocyte-(ACM) conditioned media obtained by chemical ischemia on the neuronal injury in SH-SY5Y cells. Chemical ischemia was induced by the treatment with NaN3 and 2-deoxy-d-glucose for 2 h. MCM-treated SH-SY5Y cells showed reduced the viability, increased caspase-3 activity, decreased Bcl-2/Bax ratio, and increased cytochrome c release, increased inflammatory cytokines, and increased reactive oxygen species (ROS) generation. MCM also increased gp91phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which was inhibited by NADPH oxidase inhibitor, apocynin, and gp91phox siRNA. However, ACM did not show any significant changes. The results suggest that microglia activated by ischemic insult may increase reactive oxygen species generation via activation of gp91phox NADPH oxidase, resulting in neuronal injury.  相似文献   

8.
The present study shows that activation of microglial NADPH oxidase and production of reactive oxygen species (ROS) is associated with thrombin-induced degeneration of nigral dopaminergic neurons in vivo. Seven days after thrombin injection in the rat substantia nigra (SN), tyrosine hydroxylase immunocytochemistry showed a significant loss of nigral dopaminergic neurons. This cell death was accompanied by localization of terminal deoxynucleotidyl transferase-mediated fluorecein UTP nick-end labelling (TUNEL) staining within dopaminergic neurons. This neurotoxicity was antagonized by the semisynthetic tetracycline derivative, minocycline, and the observed neuroprotective effects were associated with the ability of minocycline to suppress NADPH oxidase-derived ROS production and pro-inflammatory cytokine expression, including interleukin-1beta and inducible nitric oxide synthase, from activated microglia. These results suggest that microglial NADPH oxidase may be a viable target for neuroprotection against oxidative damage.  相似文献   

9.
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.  相似文献   

10.
This study was designed to measure the effects of iron supplementation on respiratory burst in iron-deficient anemia. The performance of neutrophils was evaluated by measuring the activity of NADPH oxidase in 18 patients with iron-deficient anemia before and after body iron stores are saturated. The activity of NADPH oxidase was significantly lower in pretreatment patients relative to controls (p<0.05). The activity increased after iron supplementation to levels that had no significant differences relative to controls.  相似文献   

11.
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (2K1C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition.  相似文献   

12.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   

13.
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4–2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodium alone is not sufficient for activation.  相似文献   

14.
ROS (reactive oxygen species) take an important signalling role in angiogenesis. Although there are several ways to produce ROS in cells, multicomponent non‐phagocytic NADPH oxidase is an important source of ROS that contribute to angiogenesis. In the present work, we examined the effects of H2O2 on angiogenesis including proliferation and migration in HUVECs (human umbilical vein endothelial cells), new vessel formation in chicken embryo CAM (chorioallantoic membrane) and endothelial cell apoptosis, which is closely related to anti‐angiogenesis. Our results showed that H2O2 dose‐dependently increased the generation of O2 ? (superoxide anion) in HUVECs, which was suppressed by DPI (diphenylene iodonium) and APO (apocynin), two inhibitors of NADPH oxidase. H2O2 at low concentrations (10 µM) stimulated cell proliferation and migration, but at higher concentrations, inhibited both. Similarly, H2O2 at 4 nmol/cm2 strongly induced new vessel formation in CAM, while it suppressed at high concentrations (higher than 4 nmol/cm2). Also, H2O2 (200~500 µM) could stimulate apoptosis in HUVECs. All the effects of H2O2 on angiogenesis could be suppressed by NADPH oxidase inhibitors, which suggests that NADPH oxidase acts downstream of H2O2 to produce O2 ? and then to regulate angiogenesis. In summary, our results suggest that H2O2 as well as O2 ? mediated by NADPH oxidase have biphasic effects on angiogenesis in vitro and in vivo.  相似文献   

15.
Electron transport by the human neutrophil NADPH oxidase is an important microbicidal weapon for phagocytes. The electron current (Ie) generated by the neutrophil NADPH oxidase is poorly characterised due to the lack of appropriate electrophysiological data. In this study, I fully characterise the neutrophil generated Ie when the NADPH oxidase is activated by NADPH and GTPγS. The neutrophil Ie was markedly voltage-dependent in the entire voltage range in comparison to those electron currents measured after chloride was removed from the external bath solution. The difference in Ie measured in chloride free conditions was not due to a change in the activation kinetics of voltage-gated proton channels. The Ie depolarises the neutrophil plasma membrane at a rate of 2.3 V s−1 and this depolarisation was opposed when voltage-gated proton channels are activated. 3 mM ZnCl2 depolarised the membrane potential to +97.8 ± 2.5 mV (n = 4), and this depolarisation was abolished after NADPH oxidase inhibition.  相似文献   

16.
Accumulating evidence indicates that protein phosphorylation regulates Nox activity. In this report, we show that serine282 residue of Nox activator 1 (NoxA1) is phosphorylated by Erk in response to EGF resulting in desensitization of Nox1 activity. Specifically, murine NoxA1 is detected as two independent protein bands in SDS PAGE, and the form of protein with higher mobility shifted to and merged with the one with lower mobility in response to EGF treatment. Pretreatment with PD98059 resulted in inhibition of NoxA1 migration in response to EGF indicating that Erk was involved in the process. Site-directed mutagenesis showed that S282A mutant but not S239A mutant failed to respond to EGF, demonstrating that serine282 is the target amino acid of Erk. Expression of S282A mutant of NoxA1 in these cells led to increased superoxide anion production in response to EGF compared to expression of the wild type, whereas the expression of S282E, a phosphomimetic mutant, resulted in significantly decreased superoxide anion generation. We also tested whether the phosphorylation of serine282 of NoxA1 affects Rac activation. Expression of S282A mutant NoxA1 up-regulated the Rac activity, whereas expression of S282E mutant led to the abrogation of Rac activation. Taken together, these results demonstrate that phosphorylation of NoxA1 is a part of the feedback mechanism that functions through activation of Rac with a net outcome of negative modulation of Nox1 activity.  相似文献   

17.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

18.
Abstract

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is upregulated in a variety of tissues in obesity. It is still unclear as to whether NADPH oxidase upregulation in a specific tissue is part of a systemic response. Here we analyzed the expression pattern of NADPH oxidase in vascular, adipose, and kidney tissues in a rat model of diet-induced obesity. After weaning, rats were fed either a normal or high-fat diet for 12 weeks. The high-fat diet resulted in 20% increased body weight. In the aorta, Nox4 expression was increased by three-fold in obese rats. Upregulations of p22phox and p47phox in adipose, and Nox4, p22phox, and p47phox in kidney were observed in obesity. Marked increases in plasma leptin and insulin were observed, with more modest changes in adiponectin in obese rats. The average systolic blood pressure in the obese group was 11 mmHg higher than that of lean rats (P < 0.005). There was a significant correlation between blood pressure and aortic Nox4 expression (P < 0.01). In cultured vascular smooth muscle cells, adiponectin reduced the expression of Nox4 in a protein kinase A-dependent manner. Our results suggest that upregulation of NADPH oxidase in multiple tissues during obesity appears to be a systemic response. At least in vitro, adiponectin may have a protective antioxidant role by suppressing vascular NADPH oxidase expression. The association between NADPH oxidase Nox4 expression in the vasculature and the elevated blood pressure in obesity requires further investigation.  相似文献   

19.
Neurodegenerative diseases are attributed to impairment of the ubiquitin–proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.  相似文献   

20.
Several lines of evidence suggest that neurotrophins (NTs) potentiate or cause neuronal injury under various pathological conditions. Since NTs enhance survival and differentiation of cultured neurons in serum or defined media containing antioxidants, we set out experiments to delineate the patterns and underlying mechanisms of brain-derived neurotrophic factor (BDNF)-induced neuronal injury in mixed cortical cell cultures containing glia and neurons in serum-free media without antioxidants, where the three major routes of neuronal cell death, oxidative stress, excitotoxicity, and apoptosis, have been extensively studied. Rat cortical cell cultures, after prolonged exposure to NTs, underwent widespread neuronal necrosis. BDNF-induced neuronal necrosis was accompanied by reactive oxygen species (ROS) production and was dependent on the macromolecular synthesis. cDNA microarray analysis revealed that BDNF increased the expression of cytochrome b558, the plasma membrane-spanning subunit of NADPH oxidase. The expression and activation of NADPH oxidase were increased after exposure to BDNF. The selective inhibitors of NADPH oxidase prevented BDNF-induced ROS production and neuronal death without blocking antiapoptosis action of BDNF. The present study suggests that BDNF-induced expression and activation of NADPH oxidase cause oxidative neuronal necrosis and that the neurotrophic effects of NTs can be maximized under blockade of the pronecrotic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号