首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequential production of bioethanol and lactic acid from starch materials and lignocellulosic materials was investigated as ethanol fermentation broth (EFB) can provide nutrients for lactic acid bacteria. A complete process was developed, and all major operations are discussed, including ethanol fermentation, broth treatment, lactic acid fermentation, and product separation. The effect of process parameters, including ethanol fermentation conditions, treatment methods, and the amount of EFB used in simultaneous saccharification and fermentation (SSF), is investigated. Under the selected process conditions, the integrated process without additional chemical consumption provides a 1.08 acid/alcohol ratio (the broth containing 22.4 g/L ethanol and 47.6 g/L lactic acid), which corresponds to a polysaccharide utilization ratio of 86.9 %. Starch ethanol can thus promote cellulosic lactic acid by providing important nutrients for lactic acid bacteria, and in turn, cellulosic lactic acid could promote starch ethanol by improving the profit of the ethanol production process. Two process alternatives for the integration of starch ethanol and cellulosic lactic acid are compared, and some suggestions are given regarding the reuse of yeast following the cellulosic SSF step for lactic acid production.  相似文献   

2.
This study presents results from a 2-year evaluation of biomass and cellulosic ethanol (EtOH) production potential of forage sorghum (Sorghum bicolor L. Moench) cultivars differing in brown midrib trait (i.e., bmr12) under dryland (no irrigation) and limited irrigation (2.88 mm?day?1; subsurface drip) in the semiarid Southern High Plains of the USA. Commercial cultivar Sorghum Partners 1990 (SP 1990, conventional non-bmr) produced significantly more biomass (29–62 %) than a bmr12 cultivar PaceSetter bmr (PS bmr) under irrigated and dryland conditions during both years of this study. However, PS bmr biomass had higher cellulosic EtOH conversion efficiency than SP 1990 in both years according to simultaneous saccharification and fermentation analysis. Irrigation resulted in 26–49 % more biomass and 28–72 % more cellulosic EtOH production during both growing seasons, indicating that limited irrigation had favorable effects on both biomass and biofuel production. In the first year, when precipitation was below average, both cultivars produced similar amounts of cellulosic EtOH. During the second year, when precipitation was above average, higher biomass production of SP 1990 resulted in 28 % higher cellulosic EtOH production than PS bmr when averaged across both irrigated and dryland conditions. The large range of cellulosic EtOH production (1,600 to 3,380 L?ha?1) during the 2 years of this study was primarily driven by differences in water availability that resulted from precipitation and irrigation. Our findings indicates that chemical composition and biomass yield potential of sorghum cultivars are critical factors that affect biomass and biofuel production under limited water conditions.  相似文献   

3.
A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers.  相似文献   

4.
The Novozym 435(R) catalyzed esterification and hydrolysis reactions of 4-methyloctanoic acid (ethyl ester) were investigated. In both the hydrolysis and esterification reactions, the increase of ethanol concentration led to an increase in enantiomeric ratio (E). For hydrolysis of the ethyl ester, the E-value increased from 5.5 [0% (v/v) EtOH] up to 12 [20% (v/v) EtOH]. In case of esterification, the E-value was already 16 [14% (v/v) EtOH] and rose to 57 [73% (v/v) EtOH]. When combining these results of esterification and hydrolysis, an enantiomeric ratio of 350 can be estimated for the sequential kinetic resolution of 4-methyloctanoic acid. In this way, enantiopure 4-methyloctanoic acid could be obtained after two consecutive reaction steps.  相似文献   

5.
The information presented in this publication represents current research findings on the production of glucose and xylose from straw and subsequent direct fermentation of both sugars to ethanol. Agricultural straw was subjected to thermal or alkali pulping prior to enzymatic saccharification. When wheat straw (WS) was treated at 170 degrees C for 30-60 min at a water-to-solids ratio of 7:1, the yield of cellulosic pulp was 70-82%. A sodium hydroxide extration yielded a 60% cellulosic pulp and a hemicellulosic fraction available for fermentation to ethanol. The cellulosic pulps were subjected to cellulase hydrolysis at 55 degrees C for production of sugars to support a 6-C fermentation. Hemicellulose was recovered from the liquor filtrates by acid/alcohol precipitation followed by acid hydrolysis to xylose for fermentation. Subsequent experiments have involved the fermentation of cellulosic and hemicelluosic hydrolysates to ethanol. Apparently these fermentations were inhibited by substances introduced by thermal and alkali treatment of the straws, because ethanol efficiencies of only 40-60% were achieved. Xylose from hydrolysis of wheat straw pentosans supported an ethanol fermentation by Pachysolen tannophilus strain NRRL 2460. This unusual yeast is capable of producing ethanol from both glucose and xylose. Ethanol yields were not maximal due to deleterious substances in the WS hydrolysates.  相似文献   

6.
Chronic ethanol exposure is known to affect deacylation-reacylation of membrane phospholipids (PL). In our earlier studies we have demonstrated that chronic exposure to ethanol (EtOH) leads to a progressive increase in membrane phospholipase A2 (PLA2) activity. In the current study, we investigated the effects of chronic EtOH exposure on the incorporation of different free fatty acids (FFAs) into membrane PL. The results suggest that the incorporation of fatty acids into four major PL varied from 9.6 fmol/min/mg protein for docosahexaenoic acid (DHA) into phosphatidylinositol (PI) to 795.8 fmol/min/mg protein for linoleic acid (LA) into phosphatidylcholine (PC). These results also suggest a preferential incorporation of DHA into PC; arachidonic acid (AA) into PI; oleic acid into phosphatidylethanolamine (PE) and PC; LA into PC and stearic acid into PE. Chronic EtOH exposure affected the incorporation of unsaturated fatty acid into PI, phosphatidylserine (PS) and PC. However, EtOH did not affect significantly the incorporation of any of the fatty acids (FA) studied into PE. No significant differences were observed with the stearic acid. It is suggested that acyltransferases may play an important role in the membrane adaptation to the injurious effects of EtOH.  相似文献   

7.
Toivari M  Mäki T  Suutarla S  Eklund KK 《Life sciences》2000,67(23):2795-2806
Activated mast cells (MC) can produce a wide variety of potent inflammatory mediators. Excessive alcohol consumption is known to lead to immune deficiency and propensity for pneumonias in particular. As MCs are important in the first line of defence of mucosal membranes we have studied the effect of ethanol (EtOH) on several MC functions. EtOH attenuated dose dependently IgE-induced degranulation of mouse bone marrow derived mast cells (mBMMC) as reflected by the release of granule associated beta-hexosaminidase (beta-hex). A mean of 26 +/- 7% inhibition of beta-hex release was observed in the presence of 5/1000 (86 mM) EtOH and nearly complete inhibition in the presence of 20/1000 (344 mM) ethanol. The IgE-induced degranulation of mBMMC cultured with EtOH for seven days was inhibited to a similar degree as the degranulation of mBMMC exposed to EtOH for only one hour. Inclusion of 5/1000 (86 mM) ethanol in the medium reduced tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 production in human mast cell line (HMC-1) cells by 55 +/- 7% and 19 +/- 5%, respectively, and the presence of 20/1000 (344 mM) ethanol inhibited the expression 81 +/- 12% and 59 +/- 14% respectively. These results suggest that, in contrast to previous assumption, ethanol inhibits several critical MC functions at least in vitro. This inhibition of mediator, and cytokine release in particular, could contribute to the immune deficiency associated with chronic alcohol consumption.  相似文献   

8.
The bench scale Novozym 435 ® catalysed esterification of 4-methyloctanoic acid with ethanol was studied at 35°C. Esterification in a batch reactor (molar ratio of 1:8 (acid:EtOH)) resulted in the isolation of the enantiomerically enriched product (ee p =81%) and substrate (ee s =93%). In order to integrate reaction and separation, liquid-vapour equilibria calculations were performed showing that an excess of ethanol results in a very low ester fraction in the vapour phase. Since this is undesirable for an integrated process of reaction and product removal, a repeated batch reaction was performed using a molar ratio of 10:1 (acid:EtOH). After six cycles (45% conversion) the ee of 4-methyloctanoic acid ethyl ester turned out to be 80%. For different E values the ee p was calculated for batch and repeated batch reactions. It was shown that in all cases the ee p was higher for the repeated batch reaction. However, the product is not enantiopure since the E value of the reaction is rather low at the low ethanol concentration used. An alternative approach would be the continuous separation of the product during the reaction. A mathematical model was developed to describe esterification in a packed bed reactor integrated with product separation. This model shows that integration of reaction and product removal in advance is not suitable either to obtain an enantiomerically pure product. Since the optimal reaction conditions (high ethanol concentration) and the optimal separation system (low ethanol concentration) do not match in this reaction, the preference is given to the batch reaction at high ethanol concentrations because in that case the highest enantioselectivity of the enzyme is obtained.  相似文献   

9.
The bench scale Novozym 435 ® catalysed esterification of 4-methyloctanoic acid with ethanol was studied at 35°C. Esterification in a batch reactor (molar ratio of 1:8 (acid:EtOH)) resulted in the isolation of the enantiomerically enriched product (ee p =81%) and substrate (ee s =93%). In order to integrate reaction and separation, liquid-vapour equilibria calculations were performed showing that an excess of ethanol results in a very low ester fraction in the vapour phase. Since this is undesirable for an integrated process of reaction and product removal, a repeated batch reaction was performed using a molar ratio of 10:1 (acid:EtOH). After six cycles (45% conversion) the ee of 4-methyloctanoic acid ethyl ester turned out to be 80%. For different E values the ee p was calculated for batch and repeated batch reactions. It was shown that in all cases the ee p was higher for the repeated batch reaction. However, the product is not enantiopure since the E value of the reaction is rather low at the low ethanol concentration used. An alternative approach would be the continuous separation of the product during the reaction. A mathematical model was developed to describe esterification in a packed bed reactor integrated with product separation. This model shows that integration of reaction and product removal in advance is not suitable either to obtain an enantiomerically pure product. Since the optimal reaction conditions (high ethanol concentration) and the optimal separation system (low ethanol concentration) do not match in this reaction, the preference is given to the batch reaction at high ethanol concentrations because in that case the highest enantioselectivity of the enzyme is obtained.  相似文献   

10.
The neurosteroid allopregnanolone (ALLO) is a potent positive modulator of gamma-aminobutyric acid(A) (GABA(A)) receptors. Earlier work indicates that sensitivity to the anticonvulsant effect of ALLO was enhanced during ethanol (EtOH) withdrawal in rats and in C57BL/6 mice, an inbred strain with mild EtOH withdrawal. In contrast, ALLO sensitivity was reduced during EtOH withdrawal in DBA/2 mice, an inbred strain with severe EtOH withdrawal. Thus, the present studies examined ALLO sensitivity during EtOH withdrawal in another animal model of EtOH withdrawal severity, the Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) selected lines. Male mice were exposed to EtOH vapor or air for 72 h. During peak withdrawal, animals were injected with ALLO [0, 3.2, 5, 10 or 17 mg/kg, intraperitoneally (i.p.)] and tested for their sensitivity to the anticonvulsant effect. In separate studies, potentiation of GABA-stimulated chloride uptake by ALLO (10 nm to 10 microm) was assessed in microsacs prepared from mouse brain mice during peak withdrawal. Notably, WSP mice were cross-tolerant to the anticonvulsant effect of ALLO during EtOH withdrawal (i.e. significant decrease in the efficacy of ALLO) when compared with values in air-exposed mice. In contrast, sensitivity to the anticonvulsant effect of ALLO was unchanged during EtOH withdrawal in the WSR line. Functional sensitivity of GABA(A) receptors to ALLO was significantly decreased during EtOH withdrawal in WSP mice in a manner consistent with the change in behavioral sensitivity to ALLO. These findings suggest that mice selectively bred for differences in EtOH withdrawal severity are differentially sensitive to ALLO during EtOH withdrawal.  相似文献   

11.
To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ~14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ~132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.  相似文献   

12.
Pruett SB  Fan R  Zheng Q 《Life sciences》2003,72(16):1825-1839
Polyinosinic polycytidylic acid (poly I:C) is an analog of double stranded RNA, which is a common replication intermediate for many viruses. It acts through a toll-like receptor (TLR3) to induce a group of cytokines that can mediate host resistance to viruses and some cancers. The effect of ethanol (EtOH) on induction of this set of cytokines has not been determined. Mice were treated with a single dose of EtOH (by gavage) at the same time as poly I:C was administered (intraperitoneally), and cytokine mRNA expression was measured by RNAse protection assay. Concentrations of IFN-alpha, IL-10, and IL-12 in the serum were measured by ELISA. A single dose of EtOH suppressed induction of mRNA for IFN-alpha, IFN-beta, IFN-gamma, IL-6, IL-9, IL-12, and IL-15. The concentrations of IFN-alpha and IL-12 in the serum were also decreased. In contrast, IL-10 was minimally induced by poly I:C alone, but it was substantially induced by poly I:C plus EtOH. Dose response and time course studies demonstrated that significant alterations of IFN-alpha, IL-10, and IL-12 expression occurred at dosages as low as 4 g/kg (a dosage previously shown to produce blood EtOH concentrations of approximately 0.2%) and that alterations persisted at least 4-6 hr after administration of EtOH. The glucocorticoid synthesis inhibitor, aminoglutethimide, diminished corticosterone levels to normal, but did not block the effects of EtOH on cytokine expression. These results demonstrate that EtOH affects the expression of poly I:C-induced cytokines and that this action is not mediated by corticosterone. These results plus previously published findings are consistent with the idea that EtOH may be a generalized suppressor of toll-like receptor signaling.  相似文献   

13.
Kenaf (Hibiscus cannabinus) is an annual fiber crop grown mainly in India and China. This crop is becoming a new bio‐based energy source because of its fast growth rate, excellent CO2 absorption ability, and large productivity per unit area. In this study, we evaluated 10 different cultivars of kenaf for their potential as biomass for cellulosic ethanol production. First, kenaf samples were hydrolyzed using dilute sulfuric acid, which is the most simple and cost‐effective pretreatment method. Next, simultaneous saccharification and fermentation (SSF) of the hydrolysates were performed by wild‐type and engineered xylose‐fermenting yeast strains. The results of compositional analysis of the biomass, the hydrolysates, and the fermented products suggested that ethanol yield and productivity were significantly affected by a type of kenaf cultivars, which was not predictable based on the biomass compositions. Also, the ethanol production was maximized when the xylose fraction was utilized by engineered yeast under the control of pH to avoid acetate inhibition. Considering the sugar compositions and their fermentability, kenaf can be a promising energy‐dedicated crop for cellulosic ethanol production.  相似文献   

14.
The striatum is the largest input nucleus to the basal ganglia and associated with reward-based behavior. We assessed whether acute ethanol (EtOH) exposure could modulate synaptic efficacy in the dorsolateral striatum of juvenile Wistar rats. Since acute EtOH administration can both increase and decrease the probability of release of different neurotransmitters from synaptic terminals, we used field potential recordings to evaluate the net effect of EtOH on striatal output. We showed that 50mM EtOH but not 20, 80 or 100mM, depresses population spike (PS) amplitude in the dorsolateral striatum. This depression of synaptic output is insensitive to the N-methyl-d-aspartic acid (NMDA) receptor inhibitor DL-2-amino-5-phosphonopentanoic acid (AP-5, 50μM), but is blocked in slices treated with glycine receptor antagonists (strychnine, 1μM; PMBA, 50μM), nicotinic acetylcholine receptor antagonists (mecamylamine, 10μM; methyllycaconitine citrate (MLA), 40nM), or GABA(A) receptor inhibitors (picrotoxin, 100μM; bicuculline, 2μM, 20μM). A long-term facilitation of synaptic output, which is more pronounced in slices from adult Wistar rats, is detected following EtOH washout (50, 80, 100mM). This long-term enhancement of PS amplitude is regulated by cholinergic interneurons and completely blocked by mecamylamine, MLA or the non-selective muscarinic antagonist scopolamine (10μM). Administration of 100mM EtOH significantly depresses PS amplitude in scopolamine-treated slices, suggesting that EtOH exerts dual actions on striatal output that are initiated instantly upon drug wash-on. In conclusion, EtOH modulates striatal microcircuitry and neurotransmission in a way that could be of importance for understanding the intoxicating properties as well as the acute reward sensation of EtOH.  相似文献   

15.
The world in the 21st century is facing a dual crisis of increasing waste and global climate change. Substituting fossil fuels with waste biomass‐derived cellulosic ethanol is a promising strategy to simultaneously meet part of our energy needs, mitigate greenhouse gas (GHG) emissions, and manage municipal solid waste (MSW). However, the global potential of MSW as an energy source is as yet unquantified. Here, we report increasing trends of MSW generation, and waste biomass‐derived cellulosic ethanol potentials in relation to socio‐economic development across 173 countries, and show that globally, up to 82.9 billion litres of waste paper‐derived cellulosic ethanol can be produced worldwide, replacing 5.36% of gasoline consumption, with accompanying GHG emissions savings of between 29.2% and 86.1%.  相似文献   

16.
The study of ethanol (EtOH) action is interesting because of its clinical relevance and for the insights it provides into structure-function relationships of excitable membranes. This paper describes the concentration dependencies of various parameters of four currents in Aplysia cells. ICa is the most sensitive of the currents studied. There was a significant reduction of ICa at concentrations of 50 mM EtOH. At low concentrations, the reduction of amplitude was the primary effect of ethanol, with the kinetics and voltage dependency of activation not affected. INa and IA were also affected, but at EtOH levels higher than those which altered ICa. The primary effect of EtOH on INa was a reduction in its amplitude, although the time to peak current flow was increased by EtOH. The effects of EtOH on IA were cell specific and, for the purposes of this paper, we examined the giant metacerebral cell (MCC). In MCC, the primary effect of EtOH on IA was an increase in the time course of inactivation. The time to peak IA was also increased by high concentrations of EtOH, but its amplitude was unaffected even at high concentrations. The delayed rectifier current, IK, was the most EtOH resistant of the currents examined. High EtOH concentrations augmented the amplitude of IK, although even at 600 mM concentrations, the percentage change was only 30%. Our results indicate that the calcium channel is very susceptible to the influence of ethanol and is a serious candidate to be the primary target of EtOH action in the nervous system. The differential sensitivity of voltage-dependent currents and individual components of a given current suggests further experiments to probe the relationship between membrane structure and channel function in excitable membranes.  相似文献   

17.
The present study investigated the effect of ethanol (EtOH) exposure and its withdrawal on the central endocannabinoid system utilizing an EtOH vapor inhalation model, which is known to produce functional tolerance and dependence to EtOH. Swiss Webster mice (n=24) were exposed to EtOH vapors for 72h. Mice were sacrificed after 72h following EtOH exposure (n=12) and 24h after its withdrawal (n=12). Radioligand binding assays were performed to measure the density of CB(1) receptor and CB(1) receptor agonist-stimulated [(35)S]GTPgammaS binding in crude synaptic membranes isolated from the cortex, hippocampus, striatum and cerebellum. The density of CB(1) receptor was significantly decreased (31-39%) in all the brain regions when compared to the control group. The CB(1) receptor-stimulated G(i/o) protein activation was also found to be decreased (29-40%) in these brain regions of EtOH exposed mice. Recovery of the CB(1) receptor density, in addition to, the CB(1) receptor-mediated G-protein activation was observed after 24h withdrawal from EtOH. The levels of cortical anandamide, which was significantly increased (147%) by EtOH exposure, returned to basal levels after 24h of withdrawal from EtOH exposure. A significant reduction (21%) in the activity of fatty acid amide hydrolase was found in the cortex of EtOH administered mice. Taken together, the neuroadaptation in the EC system may have a potential role in development of tolerance and dependence to EtOH.  相似文献   

18.
Yinbo Q  Zhu M  Liu K  Bao X  Lin J 《Biotechnology journal》2006,1(11):1235-1240
As the biggest developing country, China faces a serious challenge in satisfying its need for huge amounts of energy resources, especially for liquid fuel. The Chinese government has recently started a bioethanol project, and has produced about 1 million tons of ethanol fuel from corn and wheat in 2005. As it has the largest population in the world and limited lands for food production, cellulosic ethanol would be a more suitable choice for China. Many research projects in China on biodegradation and biotransformation of lignocellulosics have been carried out. Furthermore, understanding the biodegradation mechanism of lignocellulosics and developing practical processes for ethanol production have been ongoing. After more than 30 years of research, several pilot scale facilities have been set up, and lots of experience has been acquired. However, the calculated production cost of cellulosic ethanol is still higher than that of corn ethanol. To overcome this problem, the biorefinery conception has been introduced into research on lignocellulosics transformation. A corncob biorefinery process has been developed in Shandong University. By combining the cellulase and ethanol production with a xylose-related products production, the total production cost can be reduced. A scale of 50,000-ton/year cellulosic ethanol biorefinery is being planned to be built at Yucheng.  相似文献   

19.
Despite the well‐recognized merits of simultaneous saccharification and co‐fermentation (SSCF) on relieving sugar product inhibition on cellulase activity, a practical concomitance difficulty of xylose with inhibitors in the pretreated lignocellulose feedstock prohibits the essential application of SSCF for cellulosic ethanol fermentation. To maximize the SSCF potentials for cellulosic ethanol production, a dry biorefining approach was proposed starting from dry acid pretreatment, disk milling, and biodetoxification of lignocellulose feedstock. The successful SSCF of the inhibitor free and xylose conserved lignocellulose feedstock after dry biorefining reached a record high ethanol titer at moderate cellulase usage and minimum wastewater generation. For wheat straw, 101.4 g/L of ethanol (equivalent to 12.8% in volumetric percentage) was produced with the overall yield of 74.8% from cellulose and xylose, in which the xylose conversion was 73.9%, at the moderate cellulase usage of 15 mg protein per gram cellulose. For corn stover, 85.1 g/L of ethanol (equivalent to 10.8% in volumetric percentage) is produced with the overall conversion of 84.7% from cellulose and xylose, in which the xylose conversion was 87.7%, at the minimum cellulase usage of 10 mg protein per gram cellulose. Most significantly, the SSCF operation achieved the high conversion efficiency by generating the minimum amount of wastewater. Both the fermentation efficiency and the wastewater generation in the current dry biorefining for cellulosic ethanol production are very close to that of corn ethanol production, indicating that the technical gap between cellulosic ethanol and corn ethanol has been gradually filled by the advancing biorefining technology.  相似文献   

20.
The longest part of the sperm flagellum, the principal piece, contains the fibrous sheath, a cytoskeletal element unique to spermiogenesis. We performed mass spectrometry proteomics on isolated human fibrous sheaths identifying a unique ADP/ATP carrier protein, SFEC [AAC4], seven glycolytic enzymes previously unreported in the human sperm fibrous sheath, and sorbitol dehydrogenase. SFEC, pyruvate kinase and aldolase were co-localized by immunofluorescence to the principal piece. A homology model constructed for SFEC predicted unique residues at the entrance to the nucleotide binding pocket of SFEC that are absent in other human ADP/ATP carriers, suggesting opportunities for selective drug targeting. This study provides the first evidence of a role for an ADP/ATP carrier family member in glycolysis. The co-localization of SFEC and glycolytic enzymes in the fibrous sheath supports a growing literature that the principal piece of the flagellum is capable of generating and regulating ATP independently from mitochondrial oxidation in the mid-piece. A model is proposed that the fibrous sheath represents a highly ordered complex, analogous to the electron transport chain, in which adjacent enzymes in the glycolytic pathway are assembled to permit efficient flux of energy substrates and products with SFEC serving to mediate energy generating and energy consuming processes in the distal flagellum, possibly as a nucleotide shuttle between flagellar glycolysis, protein phosphorylation and mechanisms of motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号