首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

2.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

3.
4.
Soil is the largest reservoir of organic carbon (C) in the terrestrial biosphere and soil C has a relatively long mean residence time. Rising atmospheric carbon dioxide (CO2) concentrations generally increase plant growth and C input to soil, suggesting that soil might help mitigate atmospheric CO2 rise and global warming. But to what extent mitigation will occur is unclear. The large size of the soil C pool not only makes it a potential buffer against rising atmospheric CO2, but also makes it difficult to measure changes amid the existing background. Meta‐analysis is one tool that can overcome the limited power of single studies. Four recent meta‐analyses addressed this issue but reached somewhat different conclusions about the effect of elevated CO2 on soil C accumulation, especially regarding the role of nitrogen (N) inputs. Here, we assess the extent of differences between these conclusions and propose a new analysis of the data. The four meta‐analyses included different studies, derived different effect size estimates from common studies, used different weighting functions and metrics of effect size, and used different approaches to address nonindependence of effect sizes. Although all factors influenced the mean effect size estimates and subsequent inferences, the approach to independence had the largest influence. We recommend that meta‐analysts critically assess and report choices about effect size metrics and weighting functions, and criteria for study selection and independence. Such decisions need to be justified carefully because they affect the basis for inference. Our new analysis, with a combined data set, confirms that the effect of elevated CO2 on net soil C accumulation increases with the addition of N fertilizers. Although the effect at low N inputs was not significant, statistical power to detect biogeochemically important effect sizes at low N is limited, even with meta‐analysis, suggesting the continued need for long‐term experiments.  相似文献   

5.
Elevated atmospheric CO2 increases aboveground plant growth and productivity. However, carbon dioxide-induced alterations in plant growth are also likely to affect belowground processes, including the composition of soil biota. We investigated the influence of increased atmospheric CO2on bacterial numbers and activity, and on soil microbial community composition in a pasture ecosystem under Free-Air Carbon Dioxide Enrichment (FACE). Composition of the soil microbial communities, in rhizosphere and bulk soil, under two atmospheric CO2 levels was evaluated by using phospholipid fatty acid analysis (PLFA), and total and respiring bacteria counts were determined by epifluorescence microscopy. While populations increased with elevated atmospheric CO2 in bulk soil of white clover (Trifolium repens L.), a higher atmospheric CO2 concentration did not affect total or metabolically active bacteria in bulk soil of perennial ryegrass (Lolium perenne L.). There was no effect of atmospheric CO2 on total bacteria populations per gram of rhizosphere soil. The combined effect of elevated CO2 on total root length of each species and the bacterial population in these rhizospheres, however, resulted in an 85% increase in total rhizosphere bacteria and a 170% increase in respiring rhizosphere bacteria for the two plant species, when assessed on a per unit land area basis. Differences in microbial community composition between rhizosphere and bulk soil were evident in samples from white clover, and these communities changed in response to CO2 enrichment. Results of this study indicate that changes in soil microbial activity, numbers, and community composition are likely to occur under elevated atmospheric CO2, but the extent of those changes depend on plant species and the distance that microbes are from the immediate vicinity of the plant root surface.  相似文献   

6.
Temperate grasslands contribute about 20% to the global C budget. Elevation of atmospheric CO2 concentration (pCO2) could lead to additional C sequestration into these ecosystems. Microbial‐derived C in the soil comprising about 1–5% of total soil organic carbon may be an important ‘pool’ for long‐term storage of C under future increased atmospheric CO2 concentrations. In our study, the impact of elevated pCO2 on bacterial‐ and fungal‐derived C in the soil of Lolium perenne pastures was investigated under free air carbon dioxide enrichment (FACE) conditions. For 7 years, L. perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa pCO2, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ‘new’ (<7 years) C inputs in the form of microbial‐derived residues could be determined by means of stable C isotope analysis. Amino sugars in soil are reliable organic biomarkers for indicating the presence of microbial‐derived residues, with particular amino sugars indicative of either bacterial or fungal origin. It is assumed that amino sugars are stabilized to a significant extent in soil, and so may play an important role in long‐term C storage. In our study, we were also able to discriminate between ‘old’ (> 7 years) and ‘new’ microbial‐derived C using compound‐specific δ13C analysis of individual amino sugars. This new tool was very useful in investigating the potential for C storage in microbial‐derived residues and the turnover of this C in soil under increased atmospheric pCO2. The 13C signature of individual amino sugars varied between ?17.4‰ and ?39.6‰, and was up to 11.5% depleted in 13C in the FACE plots when compared with the bulk δ13C value of the native C3 L. perenne soil. New amino sugars in the bulk soil contributed up to 16% to the overall amino sugar pool after the first year and between 62% and 125% after 7 years of exposure to elevated pCO2. Amounts of new glucosamine increased by the greatest amount (16–125%) during the experiment, followed by mannosamine (?9% to 107%), muramic acid (?11% to 97%), and galactosamine (15–62%). Proportions of new amino sugars in particle size fractions varied between 38% for muramic acid in the clay fraction and 100% for glucosamine and galactosamine in the coarse sand fraction. Summarizing, during the 7‐year period, amino sugars constituted only between 0.9% and 1.6% of the total SOC content. Therefore, their absolute significance for long‐term C sequestration is limited. Additionally new amino sugars were only sequestered in the silt fraction upon elevated pCO2 exposure while amino sugar concentrations in the clay fraction decreased. Overall, amino sugar concentrations in bulk soil did not change significantly upon exposure to elevated pCO2. The calculated mean residence time of amino sugars was surprisingly low varying between 6 and 90 years in the bulk soil, and between 3 and 30 years in the particle size fractions, representing soil organic matter pools with different but relatively low turnover times. Therefore, compound‐specific δ13C analysis of individual amino sugars clearly revealed a high amino sugar turnover despite more or less constant amino sugar concentrations over a 7 years period of exposure to elevated pCO2.  相似文献   

7.
8.
The objective of this investigation was to quantify the differences in soil carbon stores after exposure of birch seedlings (Betula pendula Roth.) over one growing season to ambient and elevated carbon dioxide concentrations. One-year-old seedling of birch were transplanted to pots containing C4 soil derived from beneath a maize crop, and placed in ambient (350 L L–1) and elevated (600 L L–1) plots in a free-air carbon dioxide enrichment (FACE) experiment. After 186 days the plants and soils were destructively sampled, and analysed for differences in root and stem biomass, total plant tissue and soil C contents and 13C values. The trees showed a significant increase (+50%) in root biomass, but stem and leaf biomasses were not significantly affected by treatment. C isotope analyses of leaves and fine roots showed that the isotopic signal from the ambient and elevated CO2 supply was sufficiently distinct from that of the C4 soil to enable quantification of net root C input to the soil under both ambient and elevated CO2. After 186 days, the pots under ambient conditions contained 3.5 g of C as intact root material, and had gained an additional 0.6 g C added to the soil through root exudation/turnover; comparable figures for the pots under elevated CO2 were 5.9 g C and 1.5 g C, respectively. These data confirm the importance of soils as an enhanced sink for C under elevated atmospheric CO2 concentrations. We propose the use of C4 soils in elevated CO2 experiments as an important technique for the quantification of root net C inputs under both ambient and elevated CO2 treatments.  相似文献   

9.
The effect of elevated atmospheric CO2 concentration on the growth of shoots, roots, mycorrhizas and extraradical mycorrhizal mycelia of pine (Pinus silvestris L.) was examined. Two and a half-month-old seedlings were inoculated axenically with the mycorrhizal fungus Pisolithus tincto-rius (Pers.) by a method allowing rapid mycorrhiza formation in Petri dishes. The plants were then cultivated for 3 months in growth chambers with daily concentrations of 350 and 600 μmol mol?1 CO2 during the day. Whereas plants harvested after 1 and 2 months did not differ appreciably between ambient and increased CO2 concentrations, after 3 months they developed a considerably higher root biomass (%57%) at elevated CO2, but did not increase significantly in root length. The mycorrhizal fungus Pisolithus tinctorius, which depended entirely on the plant assimilates in the model system, grew much faster at increased CO2: 3 times more mycorrhizal root clusters were formed and the extraradical mycelium produced had twice the biomass at elevated as at ambient CO2. No difference in shoot biomass was found between the two treatments after 91 d. However, since the total water consumption of seedlings was similar in the two treatments, the water use efficiency was appreciably higher for the seedlings at increased CO2 because of the higher below-ground biomass.  相似文献   

10.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

11.
Interactions between photosynthetic substrate supply and temperature in determining the rate of three respiration components (leaf, belowground and ecosystem respiration) were investigated within three environmentally controlled, Populus deltoides forest bays at Biosphere 2, Arizona. Over 2 months, the atmospheric CO2 concentration and air temperature were manipulated to test the following hypotheses: (1) the responses of the three respiration components to changes in the rate of photosynthesis would differ both in speed and magnitude; (2) the temperature sensitivity of leaf and belowground respiration would increase in response to a rise in substrate availability; and, (3) at the ecosystem level, the ratio of respiration to photosynthesis would be conserved despite week‐to‐week changes in temperature. All three respiration rates responded to the CO2 concentration‐induced changes in photosynthesis. However, the proportional change in the rate of leaf respiration was more than twice that of belowground respiration and, when photosynthesis was reduced, was also more rapid. The results suggest that aboveground respiration plays a key role in the overall response of ecosystem respiration to short‐term changes in canopy photosynthesis. The short‐term temperature sensitivity of leaf respiration, measured within a single night, was found to be affected more by developmental conditions than photosynthetic substrate availability, as the Q10 was lower in leaves that developed at high CO2, irrespective of substrate availability. However, the temperature sensitivity of belowground respiration, calculated between periods of differing air temperature, appeared to be positively correlated with photosynthetic substrate availability. At the ecosystem level, respiration and photosynthesis were positively correlated but the relationship was affected by temperature; for a given rate of daytime photosynthesis, the rate of respiration the following night was greater at 25 than 20°C. This result suggests that net ecosystem exchange did not acclimate to temperature changes lasting up to 3 weeks. Overall, the results of this study demonstrate that the three respiration terms differ in their dependence on photosynthesis and that, short‐ and medium‐term changes in temperature may affect net carbon storage in terrestrial ecosystems.  相似文献   

12.
Invasive plant species affect a range of ecosystem processes but their impact on belowground carbon (C) pools is relatively unexplored. This is particularly true for grass invasions of forested ecosystems. Such invasions may alter both the quantity and quality of forest floor inputs. Dependent on both, two theories, ‘priming’ and ‘preferential substrate utilization’, suggest these changes may decrease, increase, or leave unchanged native plant‐derived soil C. Decreases are expected under ‘priming’ theory due to increased soil microbial activity. Under ‘preferential substrate utilization’, either an increase or no change is expected because the invasive plant's inputs are used by the microbial community instead of soil C. Here, we examine how Microstegium vimineum affects belowground C‐cycling in a southeastern US forest. Following predictions of priming theory, M. vimineum's presence is associated with decreases in native‐derived, C pools. For example, in September 2006 M. vimineum is associated with 24%, 34%, 36%, and 72% declines in total organic, particulate organic matter, mineralizable (a measure of microbially‐available C), and microbial biomass C, respectively. Soil C derived from M. vimineum does not compensate for these decreases, meaning that the sum of native‐ plus invasive‐derived C pools is smaller than native‐derived pools in uninvaded plots. Supporting our inferences that C‐cycling accelerates under invasion, the microbial community is more active per unit biomass: added 13C‐glucose is respired more rapidly in invaded plots. Our work suggests that this invader may accelerate C‐cycling in forest soils and deplete C stocks. The paucity of studies investigating impacts of grass invasion on C‐cycling in forests highlights the need to study further M. vimineum and other invasive grasses to assess their impacts on C sink strength and forest fertility.  相似文献   

13.
Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C‐depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre‐experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ‘RothC.’ We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ~40–50 g C m?2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ~30 g C m?2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle.  相似文献   

14.
We investigated the effects of elevated atmospheric CO2 concentrations (ambient + 200 ppm) on fine root production and soil carbon dynamics in a loblolly pine (Pinus taeda) forest subject to free‐air CO2 enrichment (FACE) near Durham, NC (USA). Live fine root mass (LFR) showed less seasonal variation than dead fine root mass (DFR), which was correlated with seasonal changes in soil moisture and soil temperature. LFR mass increased significantly (by 86%) in the elevated CO2 treatment, with an increment of 37 g(dry weight) m?2 above the control plots after two years of CO2 fumigation. There was no long‐term increment in DFR associated with elevated CO2, but significant seasonal accumulations of DFR mass occurred during the summer of the second year of fumigation. Overall, root net primary production (RNPP) was not significantly different, but annual carbon inputs were 21.7 gC m?2 y?1 (68%) higher in the elevated CO2 treatment compared to controls. Specific root respiration was not altered by the CO2 treatment during most of the year; however, it was significantly higher by 21% and 13% in September 1997 and May 1998, respectively, in elevated CO2. We did not find statistically significant differences in the C/N ratio of the root tissue, root decomposition or phosphatase activity in soil and roots associated with the treatment. Our data show that the early response of a loblolly pine forest ecosystem subject to CO2 enrichment is an increase in its fine root population and a trend towards higher total RNPP after two years of CO2 fumigation.  相似文献   

15.
The input and fate of new C in two forest soils under elevated CO2   总被引:2,自引:0,他引:2  
The aim of this study was to estimate (i) the influence of different soil types on the net input of new C into soils under CO2 enrichment and (ii) the stability and fate of these new C inputs in soils. We exposed young beech–spruce model ecosystems on an acidic loam and calcareous sand for 4 years to elevated CO2. The added CO2 was depleted in 13C, allowing to trace new C inputs in the plant–soil system. We measured CO2‐derived new C in soil C pools fractionated into particle sizes and monitored respiration as well as leaching of this new C during incubation for 1 year. Soil type played a crucial role in the partitioning of C. The net input of new C into soils under elevated CO2 was about 75% greater in the acidic loam than in the calcareous sand, despite a 100% and a 45% greater above‐ and below‐ground biomass on the calcareous sand. This was most likely caused by a higher turnover of C in the calcareous sand as indicated by 30% higher losses of new C from the calcareous sand than from the acidic loam during incubation. Therefore, soil properties determining stabilization of soil C were apparently more important for the accumulation of C in soils than tree productivity. Soil fractionation revealed that about 60% of the CO2‐derived new soil C was incorporated into sand fractions. Low natural 13C abundance and wide C/N ratios show that sand fractions comprise little decomposed organic matter. Consistently, incubation indicated that new soil C was preferentially respired as CO2. During the first month, evolved CO2 consisted to 40–55% of new C, whereas the fraction of new C in bulk soil C was 15–23% only. Leaching of DOC accounted for 8–23% of the total losses of new soil C. The overall effects of CO2 enrichment on soil C were small in both soils, although tree growth increased significantly on the calcareous sand. Our results suggest that the potential of soils for C sequestration is limited, because only a small fraction of new C inputs into soils will become long‐term soil C.  相似文献   

16.
Atmospheric CO2 (Ca) concentration has increased significantly during the last 20 000 years, and is projected to double this century. Despite the importance of belowground processes in the global carbon cycle, community‐level and single species root responses to rising Ca are not well understood. We measured net community root biomass over 3 years using ingrowth cores in a natural C3–C4 grassland exposed to a gradient of Ca from preglacial to future levels (230–550 μmol mol?1). Root windows and minirhizotron tubes were installed below naturally occurring stands of the C4 perennial grass Bothriochloa ischaemum and its roots were measured for respiration, carbohydrate concentration, specific root length (SRL), production, and lifespan over 2 years. Community root biomass increased significantly (P<0.05) with Ca over initial conditions, with linear or curvilinear responses depending on sample date. In contrast, B. ischaemum produced significantly more roots at subambient than elevated Ca in minirhizotrons. The lifespan of roots with five or more neighboring roots in minirhizotron windows decreased significantly at high Ca, suggesting that after dense root growth depletes soil resource patches, plants with carbon surpluses readily shed these roots. Root respiration in B. ischaemum showed a curvilinear response to Ca under moist conditions in June 2000, with the lowest rates at Ca<300 μmol mol?1 and peak activity at 450 μmol mol?1 in a quadratic model. B. ischaemum roots at subambient Ca had higher SRLs and slightly higher carbohydrate concentrations than those at higher Ca, which may be related to drier soils at low Ca. Our data emphasize that belowground responses of plant communities to Ca can be quite different from those of the individual species, and suggest that complex interactions between and among roots and their immediate soil environment influence the responses of root physiology and lifespan to changing Ca.  相似文献   

17.
The capacity of forest ecosystems to sequester C in the soil relies on the net balance between litter production above, as well as, below ground, and decomposition processes. Nitrogen mineralization and its availability for plant growth and microbial activity often control the speed of both processes. Litter production, decomposition and N mineralization are strongly interdependent. Thus, their responses to global environmental changes (i.e. elevated CO2, climate, N deposition, etc.) cannot be fully understood if they are studied in isolation. In the present experiment, we investigated litter fall, litter decomposition and N dynamics in decomposing litter of three Populus spp., in the second and third growing season of a short rotation coppice under FACE. Elevated CO2 did not affect annual litter production but slightly retarded litter fall in the third growing season. In all species, elevated CO2 lowered N concentration, resulting in a reduction of N input to the soil via litter fall, but did not affect lignin concentrations. Litter decomposition was studied in bags incubated in situ both in control and FACE plots. Litter lost between 15% and 18% of the original mass during the eight months of field incubation. On average, litter produced under elevated CO2 attained higher residual mass than control litter. On the other end, when litter was incubated in FACE plots it exhibited higher decay rates. These responses were strongly species‐specific. All litter increased their N content during decomposition, indicating immobilization of N from external sources. Independent of the initial quality, litter incubated on FACE soils immobilized less N, possibly as a result of lower N availability in the soil. Indeed, our results refer to a short‐term decomposition experiment. However, according to a longer‐term model extrapolation of our results, we anticipate that in Mediterranean climate, under elevated atmospheric CO2, soil organic C pool of forest ecosystems may initially display faster turnover, but soil N availability will eventually limit the process.  相似文献   

18.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

19.
Disease is an integral element of agricultural and natural systems, but the roles pathogens play in determining ecosystem response to elevated CO2 have rarely been examined. To investigate whether disease can alter the response of plants to CO2, we examined the effects of doubled CO2 (~700 μmol mol?1) on Avena sativa infected with barley yellow dwarf virus (BYDV), a common pathogen of cereals and grasses. Oats infected with BYDV showed a significantly greater biomass response to CO2 enrichment than did healthy plants. Root mass of diseased plants increased by 37–60% with CO2 enrichment, but was largely unaffected in healthy plants. CO2 enrichment increased midday leaf-level photosynthesis and instantaneous water use efficiency by 34 and 93% in healthy plants and by 48 and 174% in infected plants. Foliar carbohydrates increased with both CO2 enrichment and BYDV infection, but the two factors affected individual pools dissimilarly. CO2 enrichment may alter the epidemiology of BYDV by increasing the persistence of infected plants.  相似文献   

20.
Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette.Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (–19 to –40%) and in seasonally integrated ecosystem respiration (R e ; –36 to –57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP–R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号