首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of feeding rats 20% partially hydrogenated marine oil (PHMO), 20% soybean oil, or clofibrate on the conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid was studied in light mitochondrial (L) fractions prepared from liver. 20% PHMO gave a doubling both of the specific and of the total activity of the cholic acid formation compared to those found in the L-fraction from animals given standard pellets. 20% soybean oil induced the specific and the total activity to a lesser extent, 1.4- and 1.2-fold, respectively. The specific and total activity of the peroxisomal beta-oxidation of palmitic acid were induced 2.4- and 2.7-fold, respectively, by PHMO feeding. Soybean oil gave a smaller increase, 2-fold, in both specific and total activity. Clofibrate, a known peroxisomal proliferator, induced the specific and total activity of the peroxisomal fatty acid beta-oxidation 5.2- and 5.7-fold, respectively, whereas the specific activity of the cholic acid formation remained unchanged compared to standard pellet feeding. The same pattern was found in the postnuclear supernatants (E-fractions), excluding the possibility that different treatments caused different distributions of organelles between the fractions. This differential induction of two similar peroxisomal reaction sequences suggests that at least two mechanisms for peroxisomal induction exist.  相似文献   

2.
The effect of clofibrate treatment of rats on the peroxisomal conversion in vitro of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid in liver fractions has been investigated. No increase in the activity was observed after clofibrate treatment. In contrast, peroxisomal palmitate oxidation and palmitoyl-CoA oxidase activity increased several fold. It is concluded that the enzyme system responsible for the oxidative cleavage of the steroid side chain in bile acid formation is different from the enzyme system involved in the peroxisomal beta-oxidation of long chain fatty acids.  相似文献   

3.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

4.
The effect of a 0.25% clofibrate diet for 2 weeks on peroxisomal and mitochondrial beta-oxidation in chicken liver was studied. The activities of antimycin antimycin A-insensitive palmitoyl-CoA oxidation (peroxisomal beta-oxidation) and carnitine acetyltransferase increased about two-fold. The activities of palmitoyl-CoA-dependent O2 consumption (mitochondrial beta-oxidation) and carnitine palmitoyltransferase were also slightly activated by the administration of clofibrate, but not significant. Thus, clofibrate may be a typical drug which activates the peroxisomal beta-oxidation more than the mitochondrial one in various species. The effect of clofibrate on peroxisomal carnitine acetyltransferase was the same as that on the mitochondrial one in chicken liver. Serum lipids were not lowered, but hepatomegaly was observed in the present experiment with chicken.  相似文献   

5.
We have already reported that peroxisomal beta-oxidation has an anabolic function, supplying acetyl-CoA for bile acid biosynthesis [H. Hayashi and A. Miwa, 1989, Arch. Biochem. Biophys. 274, 582-589]. The anabolic significance of peroxisomal beta-oxidation was further investigated in the present study by using clofibrate, a peroxisome proliferator, as an experimental tool. Clofibrate suppressed 3-hydroxymethylglutaryl-CoA reductase activity (the key enzyme of cholesterol synthesis) and enhanced fatty acyl-CoA oxidase activity (the rate-limiting enzyme of beta-oxidation). Rats were fed a chow containing 0.25% clofibrate for 2 weeks, and then a bile duct fistula was implanted. [1-14C]lignoceric acid, which is degraded exclusively by peroxisomal FAOS, was injected into the rats 24 h after the operation. By this time, the secondary bile acids and pooled cholesterol which would normally be secreted into the bile are considered to have been exhausted from the liver. Clofibrate significantly decreased the incorporations of radioactivity into biliary bile acid (40% of the control) and cholesterol (50%), but did not affect biliary lipid contents. [14C]Acetyl-CoA formed by peroxisomal beta-oxidation of [1-14C]lignoceric acid was preferentially utilized for syntheses of long-chain fatty acids and phospholipids rather than synthesis of cholesterol or triglyceride. The radioactivities incorporated into the former two lipids were increased 2-fold over the control by administration of clofibrate, while the incorporation into triglyceride was decreased to approximately half. In particular, the incorporation into phosphatidylethanolamine was increased as much as 3.5-fold over the control. The contents of these lipids in the liver were not affected by clofibrate. The results suggest that peroxisomal beta-oxidation plays an important role in the biosynthesis of functional lipids such as phospholipids (this work), in addition to bile acids and cholesterol (previous report) by supplying acetyl-CoA.  相似文献   

6.
Liver peroxisomes of two anuran amphibian species, Rana esculenta and Xenopus laevis, were studied in untreated and in clofibrate-treated adults by means of complementary technical approaches, ie, ultrastructural cytochemistry, cell fractionation and marker enzyme activity assays. In untreated adults, hepatic peroxisomes were found to be very scarce in Xenopus when compared to Rana. Activities of catalase, D-amino acid oxidase and of the three first enzymes of the peroxisomal beta-oxidation system were detected in the light mitochondrial fractions enriched in peroxisomes and prepared from livers of both species. Administration of clofibrate at a daily dose level of 60 mg (Rana) and 90 mg (Xenopus) during ten days induced a drastic peroxisome proliferation in Rana hepatocytes but had no visible effect on the hepatic peroxisomal population of Xenopus. The catalase activity and the peroxisomal beta-oxidation system of liver cells were enhanced in Rana as well as in Xenopus. The hepatic D-amino acid oxidase specific activity was increased in Rana whereas it remained rather constant in Xenopus. Taking advantage of the behaviors of Rana and Xenopus hepatic peroxisomes, the molecular mechanisms of clofibrate induction are now investigated in the target liver cells of the two amphibian species.  相似文献   

7.
1. The metabolism of [14-14C]erucate and [U-14C]palmitate has been investigated in perfused heart from rats fed 0.3% clofibrate for 10 days and from control rats. 2. The total uptake of fatty acids in the heart increased in the clofibrate fed group. Clofibrate increased the oxidation of [14-14C]erucic acid by 100% and the oxidation of [U-14C]palmitic acid by 30% compared to controls. 3. The chain-shortening of erucate to C20:1 and C18:1 fatty acids in the perfused heart was stimulated at least two-fold by clofibrate feeding. 4. The activity of the peroxisomal marker enzyme catalase increased 60%, the activity of cytochrome oxidase increased approx. 16% and the content of total coenzyme A increased 30% in heart homogenates from rats fed clofibrate compared to controls. 5. The isolated mitochondrial fraction from clofibrate fed rats showed an increased capacity for oxidation of palmitoylcarnitine and decanoylcarnitine, while the oxidation of erucoylcarnitine showed little change. 6. It is suggested that clofibrate increases the oxidation of [14-14C]erucic acid in the perfused heart by increasing the capacity for chain-shortening of [14-14C]erucate in the peroxisomal beta-oxidation system.  相似文献   

8.
The acetyl-CoA-dependent elongation of medium-chain acyl-CoA in the presence of pyridine nucleotide was studied in rat liver. The activity was increased by the administration of peroxisome proliferators, clofibrate and di-(2-ethylhexyl)phthalate, and the change was more remarkable in peroxisomes than in mitochondria. Addition of 0.01% Triton X-100 to the incubation mixture caused an increase in the mitochondrial activity, whereas the peroxisomal activity did not increase significantly. The pH optimum for the peroxisomal activity was in the range of pH 6.5-7.0 and that for the mitochondrial activity was pH 7.5-8.0. The specificities of primer chain length in both organelles were almost the same, and octanoyl-CoA was the preferred substrate. Peroxisomal activity was completely inhibited by the addition of 1 mM N-ethylmaleimide or 1 mM p-hydroxymercuribenzoic acid, while the activity did not change on the addition of 1 mM KCN or an antibody to acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system. The activity of enoyl-CoA reductase, which catalyzes the last step of the elongation system, was also detected in peroxisomes, although the main activity was localized in microsomes. When the liver peroxisomal fraction of clofibrate-treated rats was incubated with a mixture of octanoyl-CoA, acetyl-CoA, NADH, NADPH, and Triton X-100 in a buffer system, dodecanoyl-CoA was detected as the main product by radio-gas chromatography. On the other hand, the elongation activity was decreased greatly by the addition of NAD+ into the mixture. These results indicate that (i) peroxisomes have activity to elongate medium chain acyl-CoA; (ii) the peroxisomal elongation system may consist of the reverse reaction of the beta-oxidation system except for the last step, which is catalyzed by enoyl-CoA reductase; and (iii) the peroxisomal elongation system is less active than the beta-oxidation system under physiological conditions.  相似文献   

9.
The in vivo oxidation of perfused [14C]-labeled fatty acids has been shown to decrease dramatically in hypoxic hearts. This study addresses the influence of ischemia and reperfusion on the enzymic activities of beta-oxidation of fatty acids in mitochondria and of peroxisomal origin. The rate of beta-oxidation of fatty acids in the isolated mitochondria from myocardium of swine fed control diet declined about 20% by the ischemic insult induced by hypothermic cardioplegic arrest. Upon reperfusion, the rate of mitochondrial beta-oxidation returned to a normal level. In clofibrate-fed animals, the rate of mitochondrial beta-oxidation did not vary significantly between control, ischemic, and perfused tissues. Furthermore, neither in control nor in clofibrate-fed animals did the rates of peroxisomal beta-oxidation of fatty acids vary significantly in the ischemic or reperfused tissues as compared to that of preischemic controls. These results suggest that ischemia does not contribute to any loss of enzymic activity in beta-oxidation of fatty acid cycles either in mitochondria or peroxisomes. Furthermore, the feeding of 0.5% (w/w) clofibrate to pigs increased the rate of mitochondrial beta-oxidation of fatty acids only by 50% while that of peroxisomes increased threefold. A similar threefold increase in catalase activity was also produced by clofibrate feeding. These results suggest that the heart plays a role in the hypolipidemic action of clofibrate.  相似文献   

10.
Liver peroxisomal fractions, isolated from rats treated with clofibrate, were shown to hydrolyze added [1-14C]acetyl-CoA to free [1-14C]acetate. [1-14C]Acetyl-CoA was, however, also converted to [14C]acetoacetyl-CoA. This reaction was inhibited by added ATP and by solubilization of the peroxisomes. The effect of ATP on synthesis of [14C]acetoacetyl-CoA was likely due to ATP-dependent stimulation of acetyl-CoA hydrolase (EC 3.1.2.1) activity. The inhibitory effect due to solubilizing conditions of incubation remains unexplained. During peroxisomal beta-oxidation of [1-14C]palmitoyl-CoA, [1-14C]acetyl-CoA, [1-14C]acetate, and [14C]acetoacetyl-CoA were shown to be produced. Possible metabolic implications of peroxisomal acetoacetyl-CoA synthesis are discussed.  相似文献   

11.
beta-Oxidation of unsaturated fatty acids was studied with isolated solubilized or nonsolubilized peroxisomes or with perfused liver isolated from rats treated with clofibrate. gamma-Linolenic acid gave the higher rate of beta-oxidation, while arachidonic acid gave the slower rate of beta-oxidation. Other polyunsaturated fatty acids (including docosahexaenoic acid) were oxidized at rates which were similar to, or higher than, that observed with oleic acid. Experiments with 1-14C-labeled polyunsaturated fatty acids demonstrated that these are chain-shortened when incubated with nonsolubilized peroxisomes. Spectrophotometric investigation of solubilized peroxisomal incubations showed that 2,4-dienoyl-CoA esters accumulated during peroxisomal beta-oxidation of fatty acids possessing double bond(s) at even-numbered carbon atoms. beta-Oxidation of [1-14C]docosahexaenoic acid by isolated peroxisomes was markedly stimulated by added NADPH or isocitrate. This fatty acid also failed to cause acyl-CoA-dependent NADH generation with conditions of assay which facilitate this using other acyl-CoA esters. These findings suggest that 2,4-dienoyl-CoA reductase participation is essential during peroxisomal beta-oxidation if chain shortening is to proceed beyond a delta 4 double bond. Evidence obtained using arachidionoyl-CoA, [1-14C]arachidonic acid, and [5,6,8,9,11,12,14,15-3H]arachidonic acid suggests that peroxisomal beta-oxidation also can proceed beyond a double bond positioned at an odd-numbered carbon atom. Experiments with isolated perfused livers showed that polyunsaturated fatty acids also in the intact liver are substrates for peroxisomal beta-oxidation, as judged by increased levels of the catalase-H2O2 complex on infusion of polyunsaturated fatty acids.  相似文献   

12.
The effects of clofibrate feeding on the metabolism of polyunsaturated fatty acids were studied in isolated rat hepatocytes. Administration of clofibrate stimulated the oxidation and particularly the peroxisomal beta-oxidation of all the fatty acids used. The increase in oxidation products was markedly higher when n-3 fatty acids were used as substrate, indicating that peroxisomes contribute more to the oxidation of n-3 than n-6 fatty acids. The whole increase in oxidation could be accounted for by a corresponding decrease in acylation in triacylglycerol while the esterification in phospholipids remained unchanged. A marked stimulation of the amounts of newly synthesized C16 and C18 fatty acids recovered, was observed when 18:2(n-6), 20:3(n-6), 18:3 (n-3) and 20:5(n-3), but not when 20:4(n-6) and 22:4(n-6) were used as substrate. This agrees with the view that extra-mitochondrial acetyl-CoA produced from peroxisomal beta-oxidation is more easily used for fatty acid new synthesis than acetyl-CoA from mitochondrial beta-oxidation. The delta 6 and delta 5 desaturase activities were distinctly higher in cells from clofibrate fed rats indicating a stimulating effect.  相似文献   

13.
Rates of peroxisomal beta-oxidation were measured as fatty acyl-CoA-dependent NAD+ reduction, by using solubilized peroxisomal fractions isolated from livers of rats treated with clofibrate. Medium- to long-chain saturated fatty acyl-CoA esters as well as long-chain polyunsaturated fatty acyl-CoA esters were used. Peroxisomal beta-oxidation shows optimal specificity towards long-chain polyunsaturated acyl-CoA esters. Eicosa-8,11,14-trienoyl-CoA, eicosa-11,14,17-trienoyl-CoA and docosa-7,10,13,16-tetraenoyl-CoA all gave Vmax. values of about 150% of that obtained with palmitoyl-CoA. The Km values obtained with these fatty acyl-CoA esters were 17 +/- 6, 13 +/- 4 and 22 +/- 3 microM respectively, which are in the same range as the value for palmitoyl-CoA (13.8 +/- 1 microM). Myristoyl-CoA gave the higher Vmax. (110% of the palmitoyl-CoA value) of the saturated fatty acyl-CoAs tested. Substrate inhibition was mostly observed with acyl-CoA esters giving Vmax. values higher than 50% of that given by palmitoyl-CoA.  相似文献   

14.
A suckling piglet model was used to study nutritional and pharmacologic means of stimulating hepatic fatty acid beta-oxidation. Newborn pigs were fed milk diets containing either long- or medium-chain triglycerides (LCT or MCT). The long-chain control diet was supplemented further with clofibric acid (0.5%) or isoproterenol (40 ppm), and growth was monitored for 10-12 days. Clofibrate increased rates of hepatic peroxisomal and mitochondrial beta-oxidation of [1-(14)C]-palmitate by 60 and 186%, respectively. Furthermore, malonyl-CoA sensitive carnitine palmitoyltransferase (CPT I) activity increased 64% (P < 0.05) in pigs receiving clofibrate. Increased CPT I activity was not congruent with changes in message, as elevated abundance of CPT I mRNA was not detected (P = 0.16) when assessed by qRT-PCR. Neither rates of beta-oxidation nor CPT activities were affected by dietary MCT or by isoproterenol treatment (P > 0.1). Collectively, these findings indicate that clofibrate effectively induced hepatic CPT activity concomitant with increased fatty acid beta-oxidation.  相似文献   

15.
Rats were treated with clofibrate, a hypolipidemic drug, and with thyroxine. Both drugs which are known to cause peroxisome proliferation, and a concomitant increase in peroxisomal fatty acid beta-oxidation activity in liver increased one of the major integral peroxisomal membrane polypeptides (PMPs), with apparent molecular mass of 69-kDa, six- and twofold, respectively. On the other hand hypothyroidism caused a decrease in peroxisomal fatty acid beta-oxidation activity and considerably lowered the concentration of PMP 69 in the peroxisomal membrane. Two other PMPs with apparent molecular masses of 36 and 22 kDa were not influenced by these treatments. The PMPs with apparent molecular masses of 42, 28, and 26 kDa were shown to be derived from the 69-kDa polypeptide by the activity of a yet uncharacterized endogenous protease during isolation of peroxisomes. Limited proteolysis of intact peroxisomes using proteinase K and subtilisin further substantiated that some portion of the 69-kDa polypeptide extends into the cytoplasm. The 36- and the 22-kDa polypeptides were accessible to proteolytic attack to a much lower extent and, therefore, are supposed to be rather deeply embedded within the peroxisomal membrane. It is demonstrated that peroxisomal acyl-CoA synthetase, an integral PMP extending partially into the cytoplasm, and PMP 69 are not identical polypeptides. Comparison of the peroxisomal membrane with that of mitochondria and microsomes revealed that the 69- and 22-kDa polypeptides as well as the bifunctional protein of the peroxisomal fatty acid beta-oxidation pathway were specifically located only in peroxisomes. Considerable amounts of a polypeptide cross-reacting with the antiserum against the 36-kDa polypeptide were found in mitochondria.  相似文献   

16.
The induction of liver fatty acid binding protein (L-FABP) by the peroxisome proliferators bezafibrate and clofibrate was compared with the induction of peroxisomal (cyanide-insensitive) palmitoyl-CoA oxidation in cultured rat hepatocytes maintained on a substratum of laminin-rich (EHS) gel. This substratum was chosen because marked induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was effected by bezafibrate in hepatocytes supported on EHS gel, whereas only peroxisomal palmitoyl-CoA oxidation was induced in hepatocytes maintained on collagen-coated plates. In control cells on EHS, activity of peroxisomal palmitoyl-CoA oxidation remained stable, while L-FABP abundance declined with time, and L-FABP mRNA was undetectable after 5 days. In cultures exposed to bezafibrate or clofibrate, peroxisomal palmitoyl-CoA oxidation activity was induced earlier and more rapidly than L-FABP. When fibrates were withdrawn, peroxisomal palmitoyl-CoA oxidation declined rapidly, whereas L-FABP continued to increase. L-FABP induction was accompanied by a striking increase in mRNA specifying this protein. Tetradecylglycidic acid, an inhibitor of carnitine palmitoyltransferase I, effectively doubled peroxisomal palmitoyl-CoA oxidation activity. However, tetradecylglycidic acid markedly inhibited fibrate induction of L-FABP and peroxisomal palmitoyl-CoA oxidation but, unexpectedly, did not prevent the fibrate-induced proliferation of peroxisomes. Maximal induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was produced at a bezafibrate concentration in the culture medium (0.05 mM) much lower than that of clofibrate (0.3 mM). Also, bezafibrate, but not clofibrate, inhibited [1-14C]oleic acid binding to L-FABP with a Ki = 9.5 microM. We conclude that hepatocytes maintained on EHS gel provide an important tool for investigating the regulation of L-FABP. These studies show that the induction of peroxisomal beta-oxidation and L-FABP by peroxisome proliferators are temporally consecutive but closely related processes which may be dependent on a mechanism distinct from that which leads to peroxisome proliferation. Furthermore, the mechanism of action of the more potent peroxisome proliferator, bezafibrate, may be mediated, in part, by interaction of this agent with L-FABP.  相似文献   

17.
In a study of the endocrine control of peroxisomes, the effects of acute glucagon treatment and fasting on hepatic peroxisomal beta-oxidation in rats have been investigated. The activity of the rate-limiting peroxisomal beta-oxidation enzyme, fatty acyl-CoA oxidase, was measured to determine whether activation of peroxisomal beta-oxidation could account for the increase in total hepatic fatty acid oxidation following acute glucagon exposure. Catalase, a peroxisomal enzyme not directly involved in beta-oxidation, was also measured as a control for total peroxisomal activity. No changes with acute glucagon treatment of intact animals were observed with either activity as measured in liver homogenates or partially purified peroxisomal fractions. These observations indicate the lack of acute control by glucagon of peroxisomal function at the level of total enzyme activity. Previous work on the effects of fasting on hepatic fatty acid beta-oxidation [H. Ishii, S. Horie, and T. Suga (1980) J. Biochem. 87, 1855-1858] suggested an enhanced role for the peroxisomal beta-oxidation pathway during starvation. It was found that the peroxisomal beta-oxidation system, as measured by fatty acyl-CoA oxidase activity, does increase with duration of fast when expressed on a per gram wet weight liver basis. However, when this activity is expressed as total liver capacity, a decline in activity with increasing duration of fast is observed. Furthermore, this decline in peroxisomal capacity parallels the decline in total liver capacity for citrate synthase, a mitochondrial matrix enzyme, and total liver protein. These data indicate that peroxisomal beta-oxidation activity is neither stimulated nor even preferentially spared from proteolysis during fasting.  相似文献   

18.
In control rats, long-chain monocarboxylyl-CoA, omega-hydroxymonocarboxylyl-CoA, and dicarboxylyl-CoA esters were substrates for hepatic, renal, and myocardial peroxisomal beta-oxidation. The latter enzyme system could not be detected in skeletal muscle. Clofibrate treatment resulted in an enhancement of peroxisomal beta-oxidizing capacity in various tissues. Intact mitochondria from control rat liver and kidney cortex incubated in the presence of L-carnitine were capable of oxidizing long-chain monocarboxylyl-CoAs and omega-hydroxymonocarboxylyl-CoAs but not dicarboxylyl-CoAs. However, control rat liver mitochondria permeabilized by digitonin oxidized dodecanedioyl-CoA indicating that the liver mitochondrial beta-oxidation system can act on dicarboxylyl-CoA esters even if the overall intact mitochondrial system is inactive on these substrates. Intact liver mitochondria from clofibrate-treated animals rapidly oxidized lauroyl-CoA and 12-hydroxylauroyl-CoA but not dodecanedioyl-CoA. These mitochondria were active on hexadecanedioyl-CoA and this activity amounted to 20-25% of that measured with palmitoyl-CoA and 16-hydroxypalmitoyl-CoA as substrates. No mitochondrial dicarboxylyl-CoA oxidation could be detected in kidney cortex from animals receiving clofibrate in their diet. Heart and skeletal muscle intact mitochondria from untreated and clofibrate-treated rats were capable of oxidizing each type of acyl-CoA as a substrate. Dicarboxylyl-CoA synthetase and carnitine dicarboxylyltransferase activities were detected in various tissues from untreated and clofibrate-treated rats with the exception of carnitine dodecanedioyltransferase reaction in livers from untreated and clofibrate-treated rats. In skeletal muscle, the acyl-CoA synthetase activities could be detected only in the presence of detergents.  相似文献   

19.
We studied the fatty acyl-CoA binding activity of rat liver peroxisomes. After subcellular fractionation of rat liver treated with or without clofibrate, a peroxisome proliferator, the binding activity with [1-(14)C]palmitoyl-CoA was detected in the light mitochondrial fraction in addition to the mitochondrial and cytosol fractions. After Nycodenz centrifugation of the light mitochondrial fraction, the binding activity was detected in peroxisomes. The peroxisomal activity depended on the incubation temperature and peroxisome concentration. The activity also depended on the concentration of 2-mercaptoethanol, and a plateau of activity was unexpectedly found at 2-mercaptoethanol concentrations from 20 to 40 mM. Clofibrate increased the total and specific activity of the fatty acyl-CoA binding of peroxisomes by 7.9 and 2.5 times compared with the control, respectively. In the presence of 20% glycerol at 0 degree C, approximately 90% of the binding activity was maintained for up to at least 3 wk. After successive treatment with an ultramembrane Amicon YM series, about 70% of the binding activity was detected in the M.W. 30,000-100,000 fraction. When the M.W. 30,000-100,000 fraction was added to the incubation mixture of the peroxisomal fatty acyl-CoA beta-oxidation system, a slight increase in the beta-oxidation activity was found. 2-Mercaptoethanol (20 mM) significantly activated the fatty acyl-CoA beta-oxidation system to 1.4 times control. After gel filtration of the M.W. 30,000-100,000 fraction, the peaks of fatty acyl-CoA binding protein showed broad elution profiles from 45,000 to 75,000. These results suggest that fatty acyl-CoA binding activity can be detected directly in peroxisomes and is increased by peroxisome proliferators. The high binding activity in the presence of higher concentrations of 2-mercaptoethanol indicates the importance of the SH group for binding. The apparent molecular weight of the binding protein may be from 45,000 to 75,000.  相似文献   

20.
The potency of the induction of peroxisomal beta-oxidation was compared between perfluorinated fatty acids (PFCAs) with different carbon chain lengths in the liver of male and female rats. In male rats, perfluoroheptanoic acid (PFHA) has little effect, although perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) potentially induced the activity. By contrast, PFHA and PFOA did not induce the activity of peroxisomal beta-oxidation in the liver of female rats while PFNA and PFDA effectively induced the activity. The induction of the activity by these PFCAs was in a dose-dependent manner, and there is a highly significant correlation between the induction and hepatic concentrations of PFCAs in the liver regardless of their carbon chain lengths. These results strongly suggest that the difference in their chemical structure is not the cause of the difference in the potency of the induction. Hepatic concentrations of PFOA and PFNA was markedly higher in male compared with female rats. Castration of male rats reduced the concentration of PFNA in the liver and treatment with testosterone entirely restored the reduction. In contrast to the results obtained from the in vivo experiments, the activity of peroxisomal beta-oxidation was induced by PFDA and PFOA to the same extent in cultured hepatocytes prepared from both male and female rats. These results, taken together, indicate that difference in accumulation between PFCAs in the liver was responsible for the different potency of the induction of peroxisomal beta-oxidation between PFCAs with different carbon chain lengths and between sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号