首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boyd JM  Ensign SA 《Biochemistry》2005,44(39):13151-13162
Epoxyalkane:coenzyme M transferase (EaCoMT) catalyzes the nucleophilic addition of coenzyme M (CoM, 2-mercaptoethanesulfonic acid) to epoxypropane forming 2-hydroxypropyl-CoM. The biochemical properties of EaCoMT suggest that the enzyme belongs to the family of alkyltransferase enzymes for which Zn plays a role in activating an organic thiol substrate for nucleophilic attack on an alkyl-donating substrate. The enzyme has a hexameric (alpha(6)) structure with one zinc atom per subunit. In the present work M(2+) binding and the role of Zn(2+) in EaCoMT have been established through a combination of biochemical, calorimetric, and spectroscopic techniques. A variety of metal ions, including Zn(2+), Co(2+), Cd(2+), and Ni(2+), were capable of activating a Zn-deficient "apo" form of EaCoMT, affording enzymes with various levels of activity. Titration of Co(2+) into apo-EaCoMT resulted in UV-visible spectroscopic changes consistent with the formation of a tetrahedral Co(2+) binding site, with coordination of bound Co(2+) to two thiolate ligands. Quantification of UV-visible spectral changes upon Co(2+) titration into apo-EaCoMT demonstrated that EaCoMT binds Co(2+) cooperatively at six interacting sites. Isothermal titration calorimetric studies of Co(2+) and Zn(2+) binding to EaCoMT also showed cooperativity for metal ion binding among six sites. The addition of CoM to Co(2+)-substituted EaCoMT resulted in UV-visible spectral changes indicative of formation of a new thiol-Co(2+) bond. Co(2+)-substituted EaCoMT exhibited a unique Co(2+) EPR spectrum, and this spectrum was perturbed significantly upon addition of CoM. The presence of a divalent metal ion was required for the release of protons from CoM upon binding to EaCoMT, with Zn(2+), Co(2+), and Cd(2+) each facilitating proton release. The divalent metal ion of EaCoMT is proposed to play a key role in the coordination and deprotonation of CoM, possibly through formation of a metal-thiolate that is activated for attack on the epoxide substrate.  相似文献   

2.
Sequence homology of the Escherichia coli YiiP places it within the family of cation diffusion facilitators, a family of membrane transporters that play a central role in regulating cellular zinc homeostasis. Here we describe the first thermodynamic and mechanistic studies of metal binding to a cation diffusion facilitator. Isothermal titration calorimetric analyses of the purified YiiP and binding competitions among Zn(2+), Cd(2+), and Hg(2+) revealed a mutually competitive binding site common to three metal ions and a set of noncompetitive binding sites, including one Cd(2+) site, one Hg(2+) site, and at least one Zn(2+) site, to which the binding of Zn(2+) exhibited partial inhibitions of both Cd(2+) and Hg(2+) bindings. Lowering the pH from 7.0 to 5.5 inhibited binding of Zn(2+) and Cd(2+) to the common site. Further, the enthalpy change of the Cd(2+) binding to the common site was found to be related linearly to the ionization enthalpy of the pH buffer with a slope corresponding to the release of 1.23 H(+) for each Cd(2+) binding. These H(+) effects are consistent with a coupled deprotonation process upon binding of Zn(2+) and Cd(2+). Modification of histidine residues by diethyl pyrocarbonate specifically inhibited Zn(2+) binding to the common binding site, indicating that the mechanism of binding-deprotonation coupling involves a histidine residue(s).  相似文献   

3.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   

4.
The mouse Slc39a8 gene encodes the ZIP8 transporter, which has been shown to be a divalent cation/HCO3- symporter. Using ZIP8 cRNA-injected Xenopus oocyte cultures, we show herein that: [a] ZIP8-mediated cadmium (Cd(2+)) and zinc (Zn(2+)) uptake have V(max) values of 1.8+/-0.08 and 1.0+/-0.08 pmol/oocyte/h, and K(m) values of 0.48+/-0.08 and 0.26+/-0.09 microM, respectively; [b] ZIP8-mediated Cd(2+) uptake is most inhibited by Zn(2+), second-best inhibited by Cu(2+), Pb(2+) and Hg(2+), and not inhibited by Mn(2+) or Fe(2+); and [c] electrogenicity studies demonstrate an influx of two HCO3- anions per one Cd(2+) (or one Zn(2+)) cation, i.e. electroneutral complexes. Using Madin-Darby canine kidney (MDCK) polarized epithelial cells retrovirally infected with ZIP8 cDNA and tagged with hemagglutinin at the C-terminus, we show that-similar to ZIP4-the ZIP8 eight-transmembrane protein is largely internalized during Zn(2+) homeostasis, but moves predominantly to the cell surface membrane (trafficking) under conditions of Zn(2+) depletion.  相似文献   

5.
In this study, we developed composite chitosan beads combining various metal ions, including Ni(2+), Cu(2+), Zn(2+), and Fe(2+), for direct adsorption of enterovirus 71 (EV71). The metal-ion species had significant effects on the adsorption capacity of beads. Among these metal ion-composite chitosan beads, Ni(2+)-chitosan beads exhibited the best adsorption capacity of EV71. Using a concentration of 0.01-M Ni(2+) was found to best provide for bead formation and EV71 adsorption. The adsorption of EV71 for Ni(2+)-chitosan beads at neutral or alkaline pH was favored. Under a competitive condition with albumin proteins, Ni(2+)-chitosan beads exhibited significant capacity of EV71 adsorption in culture media. The adsorption of EV71 on the Ni(2+)-chitosan beads was attributed to the strong binding between Ni(2+) ions chelated to the surface amino acid of EV71 capsids and Ni(2+) ions chelated on the chitosan materials. Moreover, the adsorbed EV71 retained its antigenicity and infectivity after desorption. The Ni(2+)-chitosan beads exhibit a promising application to EV71 adsorption and removal.  相似文献   

6.
Living bio-sludge from domestic wastewater treatment plant was used as adsorbent of heavy metals (Pb(2+), Ni(2+)) and its adsorption capacity was about 10-30% reduced by autoclaving at 110 degrees C for 10 min. The living bio-sludge acclimatized in synthetic industrial estate wastewater (SIEWW) without heavy metals showed the highest Pb(2+) and Ni(2+) adsorption capacities at 840+/-20 and 720+/-10 mg/g bio-sludge, respectively. The adsorbed Pb(2+) and Ni(2+) were easily eluted (70-77%) from bio-sludge by washing with 0.1 mol/l HNO(3) solution. The heavy metals (Pb(2+), Ni(2+)) removal efficiency of both SBR and GAC-SBR systems were increased with the increase of hydraulic retention time (HRT), or the decrease of organic loading. The SBR system showed higher heavy metals removal efficiency than GAC-SBR system at the same organic loading or HRT. The Pb(2+), Ni(2+), BOD(5), COD and TKN removal efficiencies of GAC-SBR system were 88.6+/-0.9%, 94.6+/-0.1%, 91.3+/-1.0%, 81.9+/-1.0% and 62.9+/-0.5%, respectively with industrial estate wastewater (IEWW) with 410 mg/l glucose, 5 mg/l Pb(2+) and 5 mg/l Ni(2+) under organic loading of 1.25 kg BOD(5)/m(3) d (HRT of 3 days). The bio-sludge quality (sludge volume index: SVI) of the system was less than 80 ml/g. The excess sludge from both SBR and GAC-SBR systems with SIEWW under the organic loading of 1.25-2.50 kg BOD(5)/m(3) d contained Pb(2+) and Ni(2+) at concentrations of 240-250 mg Pb(2+)/g bio-sludge and 180-210 mg Ni(2+)/g bio-sludge, respectively.  相似文献   

7.
The cytotoxic domain of the bacteriocin colicin E9 (the E9 DNase) is a nonspecific endonuclease that must traverse two membranes to reach its cellular target, bacterial DNA. Recent structural studies revealed that the active site of colicin DNases encompasses the HNH motif found in homing endonucleases, and bound within this motif a single transition metal ion (either Zn(2+) or Ni(2+)) the role of which is unknown. In the present work we find that neither Zn(2+) nor Ni(2+) is required for DNase activity, which instead requires Mg(2+) ions, but binding transition metals to the E9 DNase causes subtle changes to both secondary and tertiary structure. Spectroscopic, proteolytic, and calorimetric data show that, accompanying the binding of 1 eq of Zn(2+), Ni(2+), or Co(2+), the thermodynamic stability of the domain increased substantially, and that the equilibrium dissociation constant for Zn(2+) was less than or equal to nanomolar, while that for Co(2+) and Ni (2+) was micromolar. Our data demonstrate that the transition metal is not essential for colicin DNase activity but rather serves a structural role. We speculate that the HNH motif has been adapted for use by endonuclease colicins because of its involvement in DNA recognition and because removal of the bound metal ion destabilizes the DNase domain, a likely prerequisite for its translocation across bacterial membranes.  相似文献   

8.
An imidazole-containing tripodal polyamine ligand N(1)-(2-aminoethyl)-N(1)-(2-imidazol-1-ylethyl)-ethane-1,2-diamine (L) was prepared and its dinuclear zinc(II) complex [Zn(L)(H(2)O)](2)(ClO(4))(4).4H(2)O (1) was obtained and examined as a catalyst for the hydrolysis of 4-nitrophenyl acetate (NA). X-ray crystal structure analysis of the complex revealed that the complex features a dinuclear cation unit with a Zn...Zn distance of 8.34A and both Zn(II) centers adopt distorted trigonal-bipyramid geometry. The solution complexation investigation performed at 25 degrees C by means of potentiometric titration revealed that the mononuclear species [ZnL](2+) is predominating in the pH rage of 7.0-9.7 in the solution and the pK(a1) for the Zn-bound water is 8.50+/-0.01. Complex 1 promoted hydrolysis of NA showed a second-order rate constant of 0.046+/-0.004 M(-1)s(-1) at pH 9.0 in 10% (v/v) CH(3)CN aqueous solution at 25 degrees C. The pH-rate profile for the second-order rate constant of NA hydrolysis with complex 1 gave a sigmoidal curve. And the results show that in the hydrolysis process the two Zn(II) centers of the dinuclear deprotonated species do not cooperate with each other and the Zn-bound hydroxide servers as reactive nucleophile toward the ester.  相似文献   

9.
1. The requirement for bivalent cations in catalysis of NAD formation from ATP and NMN in the presence of NMN adenylyltransferase of pig-liver nuclei was studied. Rates of NAD formation in the presence of the activating cations Cd(2+), Mn(2+), Mg(2+), Zn(2+), Co(2+) and Ni(2+) were approximately a linear function of heats of hydration of the corresponding ions. Ba(2+), Sr(2+), Ca(2+), Cu(2+) and Be(2+) did not activate the enzyme; Be(2+) inhibited the reaction in the presence of Mg(2+) and, to a greater extent, in the presence of Ni(2+). 2. Michaelis constants for NAD formation, measured in a coupled assay with NMN adenylyltransferase and alcohol dehydrogenase at pH8.0 and 25 degrees , in the presence of 3mm concentrations of the unvaried reactants, were 88+/-7mum-ATP, 42+/-4mum-NMN and 85+/-4mum-Mg(2+). The results at this pH and at pH7.5 were consistent with mechanisms in which Mg(2+)-ATP complex is a reactant and free ATP a competitive inhibitor. 3. Formation of nicotinamide-hypoxanthine dinucleotide from NMN and ITP in the presence of the transferase was also more rapid with Ni(2+) and Co(2+) than with Mg(2+).  相似文献   

10.
11.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

12.
Urea is the nitrogen fertilizer most utilized in crop production worldwide. Understanding all factors involved in urea metabolism in plants is an essential step towards assessing and possibly improving the use of urea by plants. Urease, the enzyme responsible for urea hydrolysis, and its accessory proteins, necessary for nickel incorporation into the enzyme active site and concomitant activation, have been extensively characterized in bacteria. In contrast, little is known about their plant counterparts. This work reports a detailed characterization of Glycine max UreG (GmUreG), a urease accessory protein. Two forms of native GmUreG, purified from seeds, were separated by metal affinity chromatography, and their properties (GTPase activity in absence and presence of Ni(2+) or Zn(2+), secondary structure and metal content) were compared with the recombinant protein produced in Escherichia coli. The binding affinity of recombinant GmUreG (rGmUreG) for Ni(2+) and Zn(2+) was determined by isothermal titration calorimetry. rGmUreG binds Zn(2+) or Ni(2+) differently, presenting a very tight binding site for Zn(2+) (K (d) = 0.02 ± 0.01 μM) but not for Ni(2+), thus suggesting that Zn(2+) may play a role on the plant urease assembly process, as suggested for bacteria. Size exclusion chromatography showed that Zn(2+) stabilizes a dimeric form of the rGmUreG, while NMR measurements indicate that rGmUreG belongs to the class of intrinsically disordered proteins. A homology model for the fully folded GmUreG was built and compared to bacterial UreG models, and the possible sites of interaction with other accessory proteins were investigated.  相似文献   

13.
Qu R  Sun C  Ji C  Wang C  Chen H  Niu Y  Liang C  Song Q 《Carbohydrate research》2008,343(2):267-273
A series of insoluble chitosan (CTS) derivatives were prepared by grafting ester- and amino-terminated dendrimer-like polyamidoamine (PAMAM) into CTS using a divergent method by repeating two processes: (1) Michael addition of methyl acrylate (MA) to surface amino groups, and (2) amidation of the resulting esters with ethylenediamine (EDA). Their structures were characterized by infrared spectra (IR) and wide-angle X-ray diffraction (WAXD). The adsorption capabilities of the products for Au(3+), Pd(2+), Pt(4+), Ag(+), Cu(2+), Zn(2+), Hg(2+), Ni(2+), and Cd(2+) were studied. The results showed that the products exhibited better adsorption capabilities for Au(3+) and Hg(2+) than for other metal ions, and the adsorption capabilities of amino-terminated products were higher than those of ester-terminated ones. Also it was observed that a high percentage of grafting of PAMAM into CTS does not ensure a high adsorption capacity.  相似文献   

14.
In several biotechnological applications of living bacterial cells with inducible gene expression systems, the extent of overexpression and the specificity to the inducer are key elements. In the present study, we established the concentration ranges of Zn(2+), Ni(2+), Co(2+), AsO(2)(-), and Cd(2+) ions that caused significant activation of the respective promoters of Synechocystis sp. without concomitant unspecific stress responses. The low expression levels can be increased up to 10-100-fold upon treatments with Cd(2+), AsO(2)(-), Zn(2+), and Co(2+) ions and up to 800-fold upon Ni(2+) treatment. These results facilitate the development of conditional gene expression systems in cyanobacteria.  相似文献   

15.
16.
AA-NADase from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase activities. Among all identified NADases, only AA-NADase contains Cu(2+) ions that are essential for its multicatalytic activity. In this study, the interactions between divalent metal ions and AA-NADase and the effects of metal ions on its structure and activity have been investigated by equilibrium dialysis, isothermal titration calorimetry, fluorescence, circular dichroism, dynamic light scattering and HPLC. The results show that AA-NADase has two classes of Cu(2+) binding sites, one activator site with high affinity and approximately six inhibitor sites with low affinity. Cu(2+) ions function as a switch for its NADase activity. In addition, AA-NADase has one Mn(2+) binding site, one Zn(2+) binding site, one strong and two weak Co(2+) binding sites, and two strong and six weak Ni(2+) binding sites. Metal ion binding affinities follow the trend Cu(2+) > Ni(2+) > Mn(2+) > Co(2+) > Zn(2+), which accounts for the existence of one Cu(2+) in the purified AA-NADase. Both NADase and ADPase activities of AA-NADase do not have an absolute requirement for Cu(2+), and all tested metal ions activate its NADase and ADPase activities and the activation capacity follows the trend Zn(2+) > Mn(2+) > Cu(2+) ~Co(2+) > Ni(2+). Metal ions serve as regulators for its multicatalytic activity. Although all tested metal ions have no obvious effects on the global structure of AA-NADase, Cu(2+)- and Zn(2+)-induced conformational changes around some Trp residues have been observed. Interestingly, each tested metal ion has a very similar activation of both NADase and ADPase activities, suggesting that the two different activities probably occur at the same site.  相似文献   

17.
Ni2+ Transport and Accumulation in Rhodospirillum rubrum   总被引:1,自引:0,他引:1       下载免费PDF全文
The cooCTJ gene products are coexpressed with CO-dehydrogenase (CODH) and facilitate in vivo nickel insertion into CODH. A Ni(2+) transport assay was used to monitor uptake and accumulation of (63)Ni(2+) into R. rubrum and to observe the effect of mutations in the cooC, cooT, and cooJ genes on (63)Ni(2+) transport and accumulation. Cells grown either in the presence or absence of CO transported Ni(2+) with a K(m) of 19 +/- 4 microM and a V(max) of 310 +/- 22 pmol of Ni/min/mg of total protein. Insertional mutations disrupting the reading frame of the cooCTJ genes, either individually or all three genes simultaneously, transported Ni(2+) the same as wild-type cells. The nickel specificity for transport was tested by conducting the transport assay in the presence of other divalent metal ions. At a 17-fold excess Mn(2+), Mg(2+), Ca(2+), and Zn(2+) showed no inhibition of (63)Ni(2+) transport but Co(2+), Cd(2+), and Cu(2+) inhibited transport 35, 58, and 66%, respectively. Nickel transport was inhibited by cold (50% at 4 degrees C), by protonophores (carbonyl cyanide m-chlorophenylhydrazone, 44%, and 2,4-dinitrophenol, 26%), by sodium azide (25%), and hydroxyl amine (33%). Inhibitors of ATP synthase (N, N'-dicyclohexylcarbodiimide and oligomycin) and incubation of cells in the dark stimulated Ni(2+) transport. (63)Ni accumulation after 2 h was four times greater in CO-induced cells than in cells not exposed to CO. The CO-stimulated (63)Ni(2+) accumulation coincided with the appearance of CODH activity in the culture, suggesting that the (63)Ni(2+) was accumulating in CODH. The cooC, cooT, and cooJ genes are required for the increased (63)Ni(2+) accumulation observed upon CO exposure because cells containing mutations disrupting any or all of these genes accumulated (63)Ni(2+) like cells unexposed to CO.  相似文献   

18.
Transition metal ions, although maintained at low concentrations, play diverse important roles in many biological processes. Two assays useful for the rapid quantification of a range of first-row transition metal ions have been developed. The colorimetric assay extends the 4-(2-pyridylazo)resorcinol assay of Hunt et al. (J. Biol. Chem. 255, 14793 (1984)) to measure nanomole quantities of Co(2+), Ni(2+), and Cu(2+) as well as Zn(2+). The fluorimetric assay takes advantage of the coordination of a number of metal ions (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)) by Fura-2 and can also be used to measure nanomole quantities of these ions. The assays developed here have the advantage of not requiring the extensive sample preparation necessary for other methodologies, such as atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy (ICPES), while being comparable in accuracy to the detection limits of ICPES for the first-row transition metal ions. To demonstrate the effectiveness of these assays, we determined the affinity of carbonic anhydrase II (CA II), a prototypical zinc enzyme, for Ni(2+) and Cd(2+). These data indicate that CA II binds transition metals with high affinity and is much more selective for Zn(2+) over Ni(2+) or Cd(2+) than most small-molecule chelators or other metalloenzymes.  相似文献   

19.
Zn(2+) and Co(2+) ions are known to promote human growth hormone reversible dimerization. In these studies, dimerization was also shown to be initiated by nine other metal ions: Cd(2+), Hg(2+), Cu(2+), Ag+, Au(3+), Au+, Pd(2+), Ni(2+), and Pt(4+). In some cases (Hg(2+), Ag(+), Au(3+), and Ni(2+)) formation of higher oligomers also took place. In addition further detailed investigation of dimerization in the presence of Zn(2+) ions was carried out.  相似文献   

20.
In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on Ca(2+)-bound S100B was examined further using NMR spectroscopy and site-directed mutagenesis. Specifically, ITC measurements of S100B mutants (helix 1, H15A and H25A; helix 4, C84A, H85A, and H90A) were found to bind Zn(2+) with lower affinity than wild-type S100B (from 2- to >25-fold). Thus, His-15, His-25, Cys-84, His-85, and perhaps His-90 of S100B are involved in coordinating Zn(2+), which was confirmed by NMR spectroscopy. Previous studies indicate that the binding of Zn(2+) enhances calcium and target protein-binding affinities, which may contribute to its biological function. Thus, chemical shift perturbations observed here for residues in both EF-hand domains of S100B during Zn(2+) titrations could be detecting structural changes in the Ca(2+)-binding domains of S100B that are pertinent to its increase in Ca(2+)-binding affinity in the presence of Zn(2+). Furthermore, Zn(2+) binding causes helix 4 to extend by one full turn when compared to Ca(2+)-bound S100B. This change in secondary structure likely contributes to the increased binding affinity that S100B has for target peptides (i.e., TRTK peptide) in the presence of Zn(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号