首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
The effects of microwave radiation (2450 MHz, continuous wave, mean specific absorption rate of 103.5 +/- 4.2 W/kg) and convection heating on the nonphosphorylating oxidative metabolism of human peripheral mononuclear leukocytes (96% lymphocytes, 4% monocytes) at 37 degrees C were investigated. Metabolic activity, determined by chemiluminescence (CL) of cells challenged with luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) linked to bovine serum albumin, was detected with a brightness photometer. A significant stimulation after microwave exposure (p less than 0.005) over total CL of matched 37 degrees C incubator controls was observed. A similar degree of stimulation compared to incubator controls was also detected after sham treatment. There was no significant difference between changes in total CL or stimulation indices of the microwave and sham exposed groups. It appears that exposure to microwave radiation, under normothermic (37 +/- 0.03 degrees C) conditions, has no effect on the oxidative metabolic activity of human peripheral mononuclear leukocytes. However, the significant differences between microwave or sham exposed cells and their respective incubator controls occurred because the temperature of the incubator controls did not exceed 35.9 degrees C and this temperature required 39 minutes to reach from 22 degrees C. Slow heating of incubator controls must be accounted for in thermal and radiofrequency radiation studies in vitro.  相似文献   

3.
Heat shock proteins (HSPs) are rapidly induced by a variety of stressors, including heat shock, ethanol, heavy metals, UV, and gamma-radiation. Mitogen-activated protein kinases (MAPKs) are also involved in the stress transduction pathways in all eukaryotes. In this study, we attempted to determine whether radiofrequency (RF) radiation is able to induce a non-thermal stress response. Human T-lymphocyte Jurkat cells and rat primary astrocytes were exposed to 1763 MHz of RF radiation at an average specific absorption rate (SAR) of either 2 W/kg or 20 W/kg, for 30 min or 1 h. Temperature was completely controlled at 37 +/- 0.2 degrees C throughout the exposure period. The sham exposures were performed under exactly identical experimental conditions without exposure to RF radiation. We assessed alterations in the expression of HSPs and the activation of MAPKs in the RF-exposed cells. No detectable difference was observed in the expression levels of HSP90, HSP70, and HSP27. The phosphorylation status of MAPKs, extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal protein kinases (JNK1/2), or p38, did not change significantly. In order to determine whether RF radiation can promote the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on stress response, cells were exposed to RF radiation coupled with TPA treatment. When TPA alone was applied, the MAPKs were found to be phosphorylated in a dose-dependent manner. However, RF radiation did not result in any enhancement of TPA-induced MAPK phosphorylation. Neither TPA nor RF radiation exerted any detectable effect on the induction of HSPs. These results indicate that 1763 MHz RF radiation alone did not elicit any stress response, nor did it have any effect on TPA-induced MAPK phosphorylation, under our experimental conditions.  相似文献   

4.
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.  相似文献   

5.
Effect of heat stress on the synthesis of soluble heat shock proteins (HSPs) and the regrowth in seminal roots of three cultivated and three wild wheat genotypes was examined. In regrowth experiments, 2-d-old etiolated seedlings were exposed to 23 (control), 32, 35, 37 and 38 degrees C for 24 h, and 35 and 37 degrees C (24 h) followed by 50 degrees C (1 h). The lengths of the seminal roots generally decreased significantly at the end of 48 and 72 h recovery growth periods at 35, 37 and 38 degrees C temperature treatments compared with control. Genotypic variability was significant level at all temperature treatments for the seminal root length. Also, genotypic differences for the number of seminal roots were determined among the wheat cultivars and between the wild wheat species and the wheat cultivars at all temperature treatments; but genotypic differences among wild wheat species were only detected at 37-->50 degrees C treatment. Acquired thermotolerance for the seminal root length is over 50% at 37-->50 degrees C treatment. The genotypic variability of soluble heat shock proteins in seminal root tissues were analyzed by two-dimensional electrophoresis (2-DE). Total number of low molecular weight (LMW) HSPs was more than intermediate-(IMW) and high- (HMW) HSPs at high temperature treatments. The most of LMW HSPs which were generally of acidic character ranged between 14.2-30.7 kDa. The genotypes had both common (43 HSP spots between at least two genotypes and 23 HSP spots between 37 and 37-->50 degrees C) and genotype-specific (72 HSP spots) LMW HSPs.  相似文献   

6.
In this study, we investigated whether exposure to 2450 MHz high-frequency electromagnetic fields (HFEMFs) could act as an environmental insult to evoke a stress response in A172 cells, using HSP70 and HSP27 as stress markers. The cells were exposed to a 2450 MHz HFEMF with a wide range of specific absorption rates (SARs: 5-200 W/kg) or sham conditions. Because exposure to 2450 MHz HFEMF at 50-200 W/kg SAR causes temperature increases in culture medium, appropriate heat control groups (38-44 degrees C) were also included. The expression of HSP 70 and HSP 27, as well as the level of phosphorylated HSP 27 ((78)Ser) (p-HSP27), was determined by Western blotting. Our results showed that the expression of HSP 70 increased in a time and dose-dependent manner at >50 W/kg SAR for 1-3 h. A similar effect was also observed in corresponding heat controls. There was no significant change in HSP 27 expression caused by HFEMF at 5-200 W/kg or by comparable heating for 1-3 h. However, HSP 27 phosphorylation increased transiently at 100 and 200 W/kg to a greater extent than at 40-44 degrees C. Phosphorylation of HSP 27 reached a maximum after 1 h exposure at 100 W/kg HFEMF. Our results suggest that exposure to a 2450 MHz HFEMF has little or no apparent effect on HSP70 and HSP27 expression, but it may induce a transient increase in HSP27 Phosphorylation in A172 cells at very high SAR (>100 W/kg).  相似文献   

7.
The goal of this study was to investigate whether radiofrequency (RF) electromagnetic-field (EMF) exposure at 1800 MHz causes production of free radicals and/or expression of heat-shock proteins (HSP70) in human immune-relevant cell systems. Human Mono Mac 6 and K562 cells were used to examine free radical release after exposure to incubator control, sham, RF EMFs, PMA, LPS, heat (40 degrees C) or co-exposure conditions. Several signals were used: continuous-wave, several typical modulations of the Global System for Mobile Communications (GSM): GSM-non DTX (speaking only), GSM-DTX (hearing only), GSM-Talk (34% speaking and 66% hearing) at specific absorption rates (SARs) of 0.5, 1.0, 1.5 and 2.0 W/kg. Heat and PMA treatment induced a significant increase in superoxide radical anions and in ROS production in the Mono Mac 6 cells when compared to sham and/or incubator conditions. No significant differences in free radical production were detected after RF EMF exposure or in the respective controls, and no additional effects on superoxide radical anion production were detected after co-exposure to RF EMFs+PMA or RF EMFs+LPS. The GSM-DTX signal at 2 W/kg produced a significant difference in free radical production when the data were compared to sham because of the decreasing sham value. This difference disappeared when data were compared to the incubator controls. To determine the involvement of heat-shock proteins as a possible inhibitor of free radical production, we investigated the HSP70 expression level after different RF EMF exposures; no significant effects were detected.  相似文献   

8.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   

9.
To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.  相似文献   

10.
Heat shock protein (HSP)105 is a testis-specific and HSP90-related protein. The aim of this study was to explore the functions of HSP105 in the rat testis. Signals of HSP105 were detected immunohistochemically in the germ cells and translocated from the cytoplasm to the nucleus at 2 days after experimental induction of cryptorchidism. In cultured testicular germ cells, a significant increase in the expression of HSP105 in response to heat stress (37 degrees C) was detected in the insoluble protein fractions. Several binding proteins were isolated from rat testis using a HSP105 antibody immunoaffinity column, and p53, the tumor suppressor gene product, was copurified with these. Furthermore, immunoprecipitation using antibodies to p53 led to coprecipitation of HSP105 together with p53 after culturing germ cells at 32.5 degrees C, but not at 37 or 42 degrees C. In conclusion, HSP105 is specifically localized in the germ cells and may translocate into the nucleus after heat shock. HSP105 is suggested to form a complex with p53 at the scrotal temperature, and dissociate from it at suprascrotal temperatures. At scrotal temperature, HSP105 may thus contribute to the stabilization of p53 proteins in the cytoplasm of the germ cells, preventing the potential induction of apoptosis by p53.  相似文献   

11.
The effects of physiologically relevant increase in temperature (37-41 degrees C) on intestinal epithelial tight junction (TJ) barrier have not been previously studied. Additionally, the role of heat-shock proteins (HSPs) in the regulation of intestinal TJ barrier during heat stress remains unknown. Because heat-induced disturbance of intestinal TJ barrier could lead to endotoxemia and bacterial translocation during physiological thermal stress, the purpose of this study was to investigate the effects of modest, physiologically relevant increases in temperature (37-41 degrees C) on intestinal epithelial TJ barrier and to examine the protective role of HSPs on intestinal TJ barrier. Filter-grown Caco-2 intestinal epithelial cells were used as an in vitro intestinal epithelial model system to assess the effects of heat exposure on intestinal TJ barrier. Exposure of filter-grown Caco-2 monolayers to modest increases in temperatures (37-41 degrees C) resulted in a significant time- and temperature-dependent increases in Caco-2 TJ permeability. Exposure to modest heat (39 or 41 degrees C) resulted in rapid and sustained increases in HSP expression; and inhibition of HSP expression produced a marked increase in heat-induced increase in Caco-2 TJ permeability (P < 0.001). Heat exposure (41 degrees C) resulted in a compensatory increase in Caco-2 occludin protein expression and an increase in junctional localization. Inhibition of HSP expression prevented the compensatory upregulation of occludin protein expression and produced a marked disruption in junctional localization of occludin protein during heat stress. In conclusion, our findings demonstrate for the first time that a modest, physiologically relevant increase in temperature causes an increase in intestinal epithelial TJ permeability. Our data also show that HSPs play an important protective role in preventing the heat-induced disruption of intestinal TJ barrier and suggest that HSP mediated upregulation of occludin expression may be an important mechanism involved in the maintenance of intestinal epithelial TJ barrier function during heat stress.  相似文献   

12.
This study examined whether HSP70 could bind to and protect against thermal inactivation of SERCA1a, the SERCA isoform expressed in adult fast-twitch skeletal muscle. Sarcoplasmic reticulum vesicles prepared from rat gastrocnemius muscle were incubated with purified HSP70 at both 37 and 41 degrees C for either 30, 60, or 120 min. Maximal SERCA1a activity (micromol/g protein/min) in the absence of HSP70 was reduced progressively with time, with greater reductions occurring at 41 degrees C compared with 37 degrees C. HSP70 protected against thermal inactivation of SERCA1a activity at 37 degrees C but not at 41 degrees C and only at 30 and 60 min but not at 120 min. HSP70 also protected against reductions in binding capacity for fluorescein isothiocyanate, a fluorescent probe that binds to Lys515 in the nucleotide binding domain of SERCA, at 30 and 60 min but not at 120 min, an effect that was independent of temperature. HEK-293 cells were co-transfected with cDNAs encoding rabbit SERCA1a and human HSP-EYFP and subjected to 40 degrees C for 1 h. Immunohistochemistry revealed nearly complete co-localization of SERCA1a with HSP70 under these conditions. Co-immunoprecipitation showed physical interaction between HSP70 and SERCA1a under all thermal conditions both in vitro and in HEK-293 cells. Modeling showed that the fluorescein isothiocyanate-binding site of intact SERCA1a in the E2 form lies in its close proximity to a potential interaction site between SERCA1a and HSP70. These results indicate that HSP70 can bind to SERCA1a and, depending on the severity of heat stress, protect SERCA1a function by stabilizing the nucleotide binding domain.  相似文献   

13.
Cycloheximide (CHM) or puromycin (PUR) added for 2 h before heating at 43 degrees C followed by either PUR or CHM during heat greatly protected cells from heat killing. This protection increased with inhibition of protein synthesis. Since treatment with a drug both before and during heating was required for heat protection, and since one drug could be exchanged for the other after the 2-h pretreatment without affecting the heat protection, a common mode of action involving inhibition of protein synthesis is suggested for the two drugs. Drug treatment reduced the synthesis of heat-shock proteins (HSPs) as studied by one-dimensional gel electrophoresis by 80-98% relative to 37 degrees C untreated controls. Synthesis of large molecules (greater than 30 kDa) was preferentially inhibited by PUR but not by CHM. Also for CHM, but not for PUR treatment, a 42 kDa band appeared along with a great reduction in the 43 kDa actin band during CHM treatment at both 37 and 43 degrees C. Furthermore, during CHM or PUR treatment, incorporation of [35S]methionine into HSP families 70, 87, or 110 was not increased relative to incorporation into total protein. However, synthesis of the 70 kDa HSP family was selectively suppressed when cells were incubated at 37 degrees C after CHM treatment, but when cells were incubated at 37 degrees C after treatment at 43 degrees C with CHM, synthesis of the 70 kDa HSP family resumed. When cells were labeled for 3 days, there was no preferential accumulation or turnover of HSP families during heating with or without CHM. Therefore, heat protection caused by treatment with CHM or PUR apparently involves a common mode of action not associated with changes in either total levels or synthesis of HSP families during drug treatment before and during heating. The significance of the changes observed in the synthesis of the HSP 70 family after heat is unknown. As thermotolerance developed during 5 h at 42 degrees C without drugs, synthesis of HSP families 70, 87, and 110, as studied with one-dimensional gels, increased 1.4-fold relative to synthesis of total protein, but compared to HSP families in cells labeled for 5 h at 37 degrees C incorporation was reduced by 40%. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The aim of this study was to compare levels of stress proteins in four Trichinella species when exposed to different stressors. Heat shock protein (HSP) 60, 70 and 90 responses were evaluated in infective larvae (L(1)) of four classic Trichinella species following exposure to oxidative, anthelminthic and thermal stress. Larvae of T. nativa, T nelsoni, T. pseudospiralis and T. spiralis were exposed to peroxide shock (0.2%, 1%, or 2% H(2)O(2)for 2h), high temperatures (40 degrees C or 45 degrees C for 2h), or 0.1 microg/ml of the benzimidazole anthelminthics: mebendazole (MBZ), albendazole (ALB) or thiabendazole (TBZ) for 4h. Following exposures, the L(1) were tested for induced morphological changes. Those observed were: (i) no change (in all species exposed to 40 degrees C) (ii) aberrant forms (in all species exposed to anthelminthics, in T. nativa, T. nelsoni and T. spiralis exposed to 45 degrees C, and in T. spiralis and T. nelsoni exposed to 0.2% H(2)O(2)) and (iii) severe degradation or death (in T. nativa and T. pseudospiralis exposed to 0.2% H(2)O(2), and in all species at 1% and 2% H(2)O(2)). In Western blot analyses, L(1) proteins were probed with monoclonal antibodies (mAbs) specific for the three HSPs. Greater changes in HSP levels occurred following H(2)O(2) exposure than with other stresses in all Trichinella species, while accumulation of a 50 kDa HSP was only observed in T. spiralis and T. pseudospiralis. Anthelminthic stress only caused decreased HSP levels in T. nativa. Thermal stress caused no significant changes in the HSP response of any species. It is suggested that other stress proteins (e.g., glucose-regulated proteins) may be involved in adaptation to thermal stress.  相似文献   

15.
Chinese hamster ovary (CHO) cells were exposed to a 43 degrees C, 15-min heat shock to study the relationship between protein synthesis and the development of thermotolerance. The 43 degrees C heat shock triggered the synthesis of three protein families having molecular weights of 110,000, 90,000, and 65,000 (HSP). These proteins were synthesized at 37 and 46 degrees C. This heat shock also induced the development of thermotolerance, which was measured by incubating the cells at 46 degrees C 4 h after the 43 degrees C heat treatment. CHO cells were also exposed to 20 micrograms/ml of cycloheximide for 30 min at 37 degrees C, 15 min at 43 degrees C, and 4 h at 37 degrees C. This treatment inhibited the enhanced synthesis of the Mr 110,000, 90,000, and 65,000 proteins. The cycloheximide was then washed out and the cells were incubated at 46 degrees C. HSP synthesis did not recover during the 46 degrees C incubation. This cycloheximide treatment also partially inhibited the development of thermotolerance. These results suggest that for CHO cells to express thermotolerance when exposed to the supralethal temperature of 46 degrees C protein synthesis is necessary.  相似文献   

16.
17.
18.
Exposure of macrophages to heat shock induces rapid synthesis of heat shock proteins (HSPs) which are important for cell homeostasis. Prostaglandins (PGs) and nitric oxide (NO) are important cell regulatory molecules. We have therefore investigated the interactions between these molecules in the LPS-induced expression of iNOS and COX-2 and in the mitochondrial activity of macrophages. Cultures of the murine macrophage cell line, J774, were exposed to heat shock (43 degrees C, 30 min) and stimulated with LPS (1 microg/ml), concomitantly or after 8h of cell recovery. NO production was measured by Griess reaction; PGE(2) by ELISA; HSP70, iNOS and COX-2 by immunobloting; mitochondrial activity by MTT assay. Heat shock induced HSP70, but not iNOS or COX-2 whereas LPS induced iNOS and COX-2 but not HSP70. When heat shock and LPS were given concomitantly, iNOS but not COX-2 expression was reduced. When a period of 8h was given between heat shock and LPS stimulation, iNOS, COX-2, PGE(2) and NO levels were significantly increased. Under these conditions, the expression of COX-2 was reduced by L-NAME (NO-synthesis inhibitor) and of iNOS by nimesulide (PGs-synthesis inhibitor). Such cross-regulation was not observed in cells at 37 degrees C. These treatments significantly reduced MTT levels in cells at 37 degrees C but not in cells submitted to heat shock. These results suggest that HSPs and cross-regulation of iNOS and COX-2 by their products might be of relevance in the control of cell homeostasis during stress conditions.  相似文献   

19.
The effects of IFN and mild hyperthermia on the responses of human promyelocytic HL-60 cells were investigated. Cells subjected to an elevated culture temperature (39.5 degrees-40.5 degrees C instead of 37 degrees C, herein referred to as heat-treated cells) showed an increase in heat shock proteins (HSPs) and corresponding mRNA synthesis, which were additionally potentiated by the presence of IFN. With cells cultured at 37 degrees C, IFN had no effect on HSP expression. The observed inhibition (40-70%) of RNA polymerase II-directed RNA synthesis (based on alpha-amanitin sensitivity) in isolated nuclei of heat-treated cells was also significantly reversed by the simultaneous addition of IFN. These data suggest that the IFN-amplified HSP gene expression may be involved in preventing irreversible damage or in fine tuning the recovery of mammalian cells from heat stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号