首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory complex I (NADH:ubiquinone oxidoreductase) is an L-shaped multisubunit protein assembly consisting of a hydrophobic membrane arm and a hydrophilic peripheral arm. It catalyses the transfer of two electrons from NADH to quinone coupled to the translocation of four protons across the membrane. Although we have solved recently the crystal structure of the peripheral arm, the structure of the complete enzyme and the coupling mechanism are not yet known. The membrane domain of Escherichia coli complex I consists of seven different subunits with total molecular mass of 258 kDa. It is significantly more stable than the whole enzyme, which allowed us to obtain well-ordered two-dimensional crystals of the domain, belonging to the space group p22(1)2(1). Comparison of the projection map of negatively stained crystals with previously published low-resolution structures indicated that the characteristic curved shape of the membrane domain is remarkably well conserved between bacterial and mitochondrial enzymes, helping us to interpret projection maps in the context of the intact complex. Two pronounced stain-excluding densities at the distal end of the membrane domain are likely to represent the two large antiporter-like subunits NuoL and NuoM. Cryo-electron microscopy on frozen-hydrated crystals allowed us to calculate a projection map at 8 A resolution. About 60 transmembrane alpha-helices, both perpendicular to the membrane plane and tilted, are present within one membrane domain, which is consistent with secondary structure predictions. A possible binding site and access channel for quinone are found at the interface with the peripheral arm. Tentative assignment of individual subunits to the features of the map has been made. The location of subunits NuoL and NuoM at substantial distance from the peripheral arm, which contains all the redox centres of the complex, indicates that conformational changes are likely to play a role in the mechanism of coupling between electron transfer and proton pumping.  相似文献   

2.
NADH:ubiquinone oxidoreductase (complex I) is the first and largest enzyme of the mitochondrial respiratory chain. The low-resolution structure of the complex is known from electron microscopy studies. The general shape of the complex is in the form of an L, with one arm in the membrane and the other peripheral. We have purified complex I from beef heart mitochondria and reconstituted the enzyme into lipid bilayers. Under different conditions, several two-dimensional crystal forms were obtained. Crystals belonging to space groups p222(1) and c12 (unit cell 488 Ax79 A) were obtained at 22 degrees C and contained only the membrane fragment of complex I similar to hydrophobic subcomplex Ibeta but lacking the ND5 subunit. A crystal form with larger unit cell (534 Ax81 A, space group c12) produced at 4 degrees C contained both the peripheral and membrane arms of the enzyme, except that ND5 was missing. Projection maps from frozen hydrated samples were calculated for all crystal forms. By comparing two different c12 crystal forms, extra electron density in the projection map of large crystal form was assigned to the peripheral arm of the enzyme. One of the features of the map is a deep, channel-like, cleft next to peripheral arm. Comparison with available structures of the intact enzyme indicates that large hydrophobic subunit ND5 is situated at the distal end of the membrane domain. Possible locations of subunit ND4 and of other subunits in the membrane domain are proposed. Implications of our findings for the mechanism of proton pumping by complex I are discussed.  相似文献   

3.
NADH:ubiquinone oxidoreductase, the respiratory chain complex I of mitochondria, is an assembly of some 25 nuclear-encoded and 7 mitochondrially encoded subunits. The complex has an overall L-shaped structure formed by a peripheral arm and an elongated membrane arm. The peripheral arm containing one FMN and at least three iron-sulphur clusters constitutes the NADH dehydrogenase segment of the electron pathway. The membrane arm with at least one iron-sulphur cluster constitutes the ubiquinone reducing segment. We are studying the assembly of the complex in Neurospora crassa. By disrupting the gene of a nuclear-encoded subunit of the membrane arm a mutant was generated that cannot form complex I. The mutant rather pre-assembles the peripheral arm with all redox groups and the ability to catalyse NADH oxidation by artificial electron acceptors. The final assembly of the membrane arm is blocked in the mutant leading to accumulation of complementary assembly intermediates. One intermediate is associated with a protein that is not present in the fully assembled complex I. The results demonstrate that the two arms of complex I are assembled independently on separate pathways, and gave a first insight into the assembly pathway of the membrane arm. It is also shown for the first time that the obligate aerobic fungus N. crassa can grow and respire without an intact complex I. Gene replacement in this fungus is therefore a tool for investigation of this complex.  相似文献   

4.
The NADH:ubiquinone oxidoreductase (complex I) of mitochondria is constructed from two arms arranged perpendicular to each other. The peripheral arm protruding into the matrix contains the proximal section of the electron pathway, and the membrane arm with all mitochondrially encoded subunits contains the distal section of the electron pathway. When Neurospora crassa is grown under manganese limitation the formation of the peripheral arm is disturbed, but the membrane arm containing the iron-sulfur cluster N-2, is accumulated. An extra-polypeptide, assumed to be a chaperone, is found to be associated with this pre-assembled membrane arm.  相似文献   

5.
Complex I (NADH:ubiquinone oxidoreductase) purified from bovine heart mitochondria was treated with the detergent N, N-dimethyldodecylamine N-oxide (LDAO). The enzyme dissociated into two known subcomplexes, Ialpha and Ibeta, containing mostly hydrophilic and hydrophobic subunits, and a previously undetected fragment referred to as Igamma. Subcomplex Igamma contains the hydrophobic subunits ND1, ND2, ND3, and ND4L which are encoded in the mitochondrial genome, and the nuclear-encoded subunit KFYI. During size-exclusion chromatography in the presence of LDAO, subcomplex Ialpha lost several subunits and formed another characterized subcomplex known as Ilambda. Similarly, subcomplex Ibeta dissociated into two smaller subcomplexes, one of which contains the hydrophobic subunits ND4 and ND5; subcomplex Igamma released a fragment containing ND1 and ND2. These results suggest that in the intact complex subunits ND1 and ND2 are likely to be in a different region of the membrane domain than subunits ND4 and ND5. The compositions of the various subcomplexes and fragments of complex I provide an organization of the subunits of the enzyme in the framework of the known low resolution structure of the enzyme.  相似文献   

6.
Fang J  Beattie DS 《Biochemistry》2002,41(9):3065-3072
A rotenone-insensitive NADH dehydrogenase has been isolated from the mitochondria of the procyclic form of African parasite, Trypanosoma brucei. The active form of the purified enzyme appears to be a dimer consisting of two 33-kDa subunits with noncovalently bound FMN as a cofactor. Hypotonic treatment of intact mitochondria revealed that the NADH dehydrogenase is located in the inner membrane/matrix fraction facing the matrix. The treatment of mitochondria with increasing concentrations of digitonin suggested that the NADH dehydrogenase is loosely bound to the inner mitochondrial membrane. The NADH:ubiquinone reductase activity is insensitive to rotenone, flavone, or dicumarol; however, it was inhibited by diphenyl iodonium in a time- and concentration-dependent manner. Maximum inhibition by diphenyl iodonium required preincubation with NADH to reduce the flavin. More complete inhibition was obtained with the more hydrophobic electron acceptors, such as Q(1) or Q(2), as compared to the more hydrophilic ones, such as Q(0) or dichloroindophenol. Kinetic analysis of the enzyme indicated that the enzyme followed a ping-pong mechanism. The enzyme conducts a one-electron transfer and can reduce molecular oxygen forming superoxide radical.  相似文献   

7.
Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-NG and ω-NG′ nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant.  相似文献   

8.
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is a multisubunit enzymatic complex. It has a characteristic L-shaped form with two domains, a hydrophilic peripheral domain and a hydrophobic membrane domain. The membrane domain contains three antiporter-like subunits (NuoL, NuoM, and NuoN, Escherichia coli naming) that are considered to be involved in the proton translocation. Deletion of either NuoL or NuoM resulted in an incomplete assembly of NDH-1 and a total loss of the NADH-quinone oxidoreductase activity. We have truncated the C terminus segments of NuoM and NuoL by introducing STOP codons at different locations using site-directed mutagenesis of chromosomal DNA. Our results suggest an important structural role for the C-terminal segments of both subunits. The data further advocate that the elimination of the last transmembrane helix (TM14) of NuoM and the TM16 (at least C-terminal seven residues) or together with the HL helix and the TM15 of the NuoL subunit lead to reduced stability of the membrane arm and therefore of the whole NDH-1 complex. A region of NuoL critical for stability of NDH-1 architecture has been discussed.  相似文献   

9.
By a recombinant DNA approach we have prepared Escherichia coli cytoplasmic membranes that are highly enriched in the terminal electron transfer enzyme fumarate reductase. This enzyme is composed of four nonidentical subunits in equal molar ratio. A 69,000-dalton covalent flavin-containing subunit and a 27,000-dalton nonheme iron-containing subunit make up a membrane extrinsic catalytic domain. Two very hydrophobic subunits of 15,000 and 13,000 daltons make up the hydrophobic membrane anchor domain. Electron microscopy of negatively stained membranes shows a characteristic knob-and-stalk-type structure composed of the catalytic domain. The anchor polypeptides have been analyzed for hydrophobic segments and alpha-helical content and a model for their organization within the lipid bilayer is presented. The results reviewed in this paper suggest a model for the fumarate reductase complex in the cytoplasmic membrane.  相似文献   

10.
NADH:ubiquinone reductase, the respiratory chain complex I of mitochondria, consists of some 25 nuclear-encoded and seven mitochondrially encoded subunits, and contains as redox groups one FMN, probably one internal ubiquinone and at least four iron-sulphur clusters. We are studying the assembly of the enzyme in Neurospora crassa. The flux of radioactivity in cells that were pulse-labelled with [35S]methionine was followed through immunoprecipitable assembly intermediates into the holoenzyme. Labelled polypeptides were observed to accumulate transiently in a Mr 350,000 intermediate complex. This complex contains all mitochondrially encoded subunits of the enzyme as well as subunits encoded in the nucleus that have no homologous counterparts in a small, merely nuclear-encoded form of the NADH:ubiquinone reductase made by Neurospora crassa cells poisoned with chloramphenicol. With regard to their subunit compositions, the assembly intermediate and small NADH:ubiquinone reductase complement each other almost perfectly to give the subunit composition of the large complex I. These results suggest that two pathways exist in the assembly of complex I that independently lead to the preassembly of two major parts, which subsequently join to form the complex. One preassembled part is related to the small form of NADH:ubiquinone reductase and contributes most of the nuclear-encoded subunits, FMN, three iron-sulphur clusters and the site for the internal ubiquinone. The other part is the assembly intermediate and contributes all mitochondrially encoded subunits, one iron-sulphur cluster and the catalytic site for the substrate ubiquinone. We discuss the results with regard to the evolution of the electron pathway through complex I.  相似文献   

11.
A simplified procedure for the isolation of NADH dehydrogenase from the inner membrane of ox heart mitochondria is presented which permits relatively rapid preparation of the enzyme in a more stable form than that afforded by published methods. The protein thus isolated displays more than eight different subunits in gel electrophoresis under denaturing conditions, three of which are also present in the "low-molecular-weight form' of the enzyme prepared under more drastic conditions. Complex I contains several subunits, mostly of low molecular weight, not seen in soluble purified NADH dehydrogenase. It is suggested that some of these may be 'binding peptides' necessary in linking NADH dehydrogenase to ubiquinone reduction, analogously to the role of small peptides in linking succinate dehydrogenase to ubiquinone. The dehydrogenase isolated by the rapid method contains equimolar amounts of non-haem iron and labile sulphur, but on further manipulation non-haem iron (but no labile sulphur) is lost, resulting in ratios of S/Fe in excess of unity, as previously reported for preparations isolated by longer procedures.  相似文献   

12.
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the most complicated and least understood enzyme of the respiratory chain. All redox prosthetic groups reside in the peripheral arm of the L-shaped structure. The NADH oxidation domain harbouring the FMN cofactor is connected via a chain of iron–sulfur clusters to the ubiquinone reduction site that is located in a large pocket formed by the PSST- and 49-kDa subunits of complex I. An access path for ubiquinone and different partially overlapping inhibitor binding regions were defined within this pocket by site directed mutagenesis. A combination of biochemical and single particle analysis studies suggests that the ubiquinone reduction site is located well above the membrane domain. Therefore, direct coupling mechanisms seem unlikely and the redox energy must be converted into a conformational change that drives proton pumping across the membrane arm. It is not known which of the subunits and how many are involved in proton translocation. Complex I is a major source of reactive oxygen species (ROS) that are predominantly formed by electron transfer from FMNH2. Mitochondrial complex I can cycle between active and deactive forms that can be distinguished by the reactivity towards divalent cations and thiol-reactive agents. The physiological role of this phenomenon is yet unclear but it could contribute to the regulation of complex I activity in-vivo.  相似文献   

13.
  • 1.1. A membrane fragment of complex I from the fungus Neurospora crassa was isolated by immunoprecipitation from alkaline-extracted mitochondrial membranes.
  • 2.2. Analysis of the polypeptide composition of this hydrophobic domain of complex I has brought insights on the topology of two subunits of the enzyme, namely the 20.8 and 9.3 kDa components.
  • 3.3. Our results indicate that the ubiquinone-binding site of complex I resides in the interface of the peripheral and membrane arms of the enzymes. The significance of these findings are discussed.
  相似文献   

14.
Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.  相似文献   

15.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, Iα, Iβ and Iλ, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.  相似文献   

16.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, I alpha, I beta and I lambda, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.  相似文献   

17.
L-galactono-1,4-lactone dehydrogenase (GLDH) catalyzes the terminal step of the Smirnoff-Wheeler pathway for vitamin C (l-ascorbate) biosynthesis in plants. A GLDH in gel activity assay was developed to biochemically investigate GLDH localization in plant mitochondria. It previously has been shown that GLDH forms part of an 850-kDa complex that represents a minor form of the respiratory NADH dehydrogenase complex (complex I). Because accumulation of complex I is disturbed in the absence of GLDH, a role of this enzyme in complex I assembly has been proposed. Here we report that GLDH is associated with two further protein complexes. Using native gel electrophoresis procedures in combination with the in gel GLDH activity assay and immunoblotting, two mitochondrial complexes of 470 and 420 kDa were identified. Both complexes are of very low abundance. Protein identifications by mass spectrometry revealed that they include subunits of complex I. Finally, the 850-kDa complex was further investigated and shown to include the complete "peripheral arm" of complex I. GLDH is attached to a membrane domain, which represents a major fragment of the "membrane arm" of complex I. Taken together, our data further support a role of GLDH during complex I formation, which is based on its binding to specific assembly intermediates.  相似文献   

18.
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.  相似文献   

19.
Made of more than 40 subunits, the rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. In vascular plants, fungi, and animals, at least seven complex I subunits (ND1, -2, -3, -4, -4L, -5, and -6; ND is NADH dehydrogenase) are coded by mitochondrial genes. The role of these highly hydrophobic subunits in the enzyme activity and assembly is still poorly understood. In the unicellular green alga Chlamydomonas reinhardtii, the ND3 and ND4L subunits are encoded in the nuclear genome, and we show here that the corresponding genes, called NUO3 and NUO11, respectively, display features that facilitate their expression and allow the proper import of the corresponding proteins into mitochondria. In particular, both polypeptides show lower hydrophobicity compared to their mitochondrion-encoded counterparts. The expression of the NUO3 and NUO11 genes has been suppressed by RNA interference. We demonstrate that the absence of ND3 or ND4L polypeptides prevents the assembly of the 950-kDa whole complex I and suppresses the enzyme activity. The putative role of hydrophobic ND subunits is discussed in relation to the structure of the complex I enzyme. A model for the assembly pathway of the Chlamydomonas enzyme is proposed.  相似文献   

20.
A partially assembled complex I in NAD4-deficient mitochondria of maize   总被引:3,自引:0,他引:3  
The proton-translocating NADH:ubiquinone oxidoreductase (respiratory complex I) consists of at least 32 subunits in higher plants, nine of which are mitochondrially encoded (NAD 1–7, NAD4L, NAD9). Complex I (CI) has been analyzed from a mitochondrial mutant of maize, NCS2, that carries a deletion for the 3′ end of the nad4 gene. Mitochondria from highly defective, near-homoplasmic mutant plants have only trace amounts of the normal complex I. Instead, a reduced amount of a smaller complex, which also exhibits NADH dehydrogenase activity, is detected on ‘blue-native’ polyacrylamide gels. Subunits of 76 kDa, 40 kDa and 55 kDa, as well as NAD7 and NAD9, have been identified in the subcomplex by their cross-reactivity with heterologous antisera. The corresponding subunits in Neurospora are localized in a ‘peripheral arm’ of CI, which is known to assemble independently of a ‘membrane arm’. The maize NCS2 CI subcomplex is loosely bound to the membrane and is missing several subunits that could be membrane components. Thus, the mutant CI subcomplex may consist of a peripheral arm. A reduction in the steady-state levels of NAD7 and NAD9 in NCS2 mitochondria occurs despite normal rates of biosynthesis and there is a concomitant decrease of the nuclear encoded 76 kDa subunit. The reduction in CI-associated NADH dehydrogenase activity in the nad4 -deficient NCS2 mutant mitochondria is not associated with a compensatory increase in the activities or amounts of the putative ‘exogenous’ NAD(P)H dehydrogenases that are found in plant mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号