首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.  相似文献   

2.
3.
Abstract. The construction and evaluation of a temperature-corrected in situ thermocouple psychrometer for measurement of leaf water potential (Ψ) is described. The instrument utilized two chromel-constantan thermocouples which allowed for detection of both the psychrometric zero offset and the temperature differential between the sample and the Peltier measuring junction. The psychrometer was subjected to stable temperature gradients while in contact with reference solutions of sodium chloride, and the effects of thermal gradients were quantified. Regression analysis indicated that temperature differentials were responsible for errors in water potential determinations of approximately –7.73 MPa°C−1. When installed on leaves of field-grown cotton ( Gossypium hirsutum L.), corn ( Zea mays L.) and soybean ( Glycine max L. Merr) the instrument detected temperature differentials up to 0.1°C (–6.0 μV) which were associated with relatively small shifts in psychrometric zero offsets (–0.05––0.75 μV). Results indicated that substantial errors in apparent Ψ were caused by non-isothermal conditions between the leaf and the psychrometer measuring junction. The relative magnitude of these errors could be quantified and the corrected results showed good agreement with conventional psychrometric determination of Ψ on excised samples during a diurnal cycle.  相似文献   

4.
Summary An in situ thermocouple psychrometer was tested to determine its capability for tracking the changing leaf water potentials of aspen (Populus tremuloides Michx.) under controlled conditions and in the field. The results agreed with theoretical expectations — a sharp decline in leaf water potential during the photoperiods and recovery during the dark periods, each to progressively lower levels during a soil drying cycle. In the field, a mid-day pause in the declining leaf water potentials was noted and attributed to transient stomatal closure. Details of the construction and use of the assembly are given.The authors are plant physiologists, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah 84401, stationed in Logan, Utah, at the Forestry Sciences Laboratory.  相似文献   

5.
Summary The need to compare pressure-chamber estimates of leaf water potential with a psychrometric method has been established for several crop species. We investigated this relationship for rice (Oryza sativa L.) as well as the need to protect leaves from water loss during sampling and measuring period in the pressure chamber. Two rice cultivars grown in containers on a clay-loam soil were stressed to varying degrees by withholding water. Fully expanded leaves were sampled for estimation of leaf water potential by the dew point hygrometer and pressure-chamber techniques. The same leaf was used in both methods allowing direct comparison. Additionally, two alternative methods of leaf handling for measurement by the pressure chamber technique were compared. Protection of leaf samples against water loss during excision, transport and handling was found to be more important at higher leaf water potentials (>−1.0 MPa). The two cultivars used appeared to differ in their response to protection of the leaf sample. These results serve to further caution pressure chamber users on extrapolating comparisons between the two measurement methods and between tissue handling techniques even within a crop species.  相似文献   

6.
Water potentials of leaves from well-watered plants were measured. There were species-specific differences in both the total and the osmotic potentials of pea (Pisum sativum), tradescantia (Tradescantia versicolor), rose (Rosa hybrida), bitter lemon (Citrus aurantium) and olive (Olea europaea). With tradescantia the potential measured after the destruction of turgor by freezing was less negative than before, a result which suggests that the value obtained is not identical with the real osmotic potential of the leaf. detached leaves of all species showed less negative water potential readings, and those of pea even a less negative osmotic potential, when cut into five pieces than when measured intact. Application of vaseline to the cut surface of the leaves reduced this effect with rose and olive, though not with tradescantia and pea. Measurements were also made of the water potentials of comparable leaves of tradescantia and bitter lemon, attached to and detached from their plants; when bitter lemon leaves were detached and watered through their petioles which protruded outside the thermocouple chamber, their potential became considerably less negative than when the same leaves had been attached to well watered plants. However, similar leaves whose cut petioles were introduced into the thermocouple chamber registered an even less negative potential. The results are consistent with the hypothesis that when a leaf is cut off a plant, and even more so when it is cut into sections, the water previously held by matrix forces becomes available to dilute the “spilled” cell sap and to be absorbed by adjacent cells and thereby to increase their turgor and render the net water potential of the leaf less negative. Similarly, the apparent negative turgor of the succulent, tradescantia leaves is likely to be due to dilution of the osmotic component by cell wall water. The discrepancies between the readings of attached and detached leaves indicate a considerable whole-plant matrix component, and the results as a whole suglest that thermocouple psychrometer readings carried out on detached and even more on cut-up leaves may be artifacts and that it is desirable to determine water potentials on leaves attached to their plants. The work was supported by a Government of Israel Fellowship and was conducted at the Department of Pomology and Viticulture, Faculty of Agriculture of the Hebrew University of Jerusalem, Rehovot, Israel.  相似文献   

7.
8.
The paper describes a thermocouple psychrometer for measurements of water potential (ψw) and its components—osmotic potential (ψs + m) and turgor pressure (ψp)—in biological objects. The isopiestic method applied in this work does not require preliminary scarification of plant material for eliminating cuticular resistance to diffusion of water vapors. The device is reliable and simple in operation owing to an original design of replaceable plungers carrying the thermocouples. A modified construction of the lid for a thermocouple chamber and the application of a cryoholder excluded the necessity of removing the sample from the chamber after ψw measurements prior to its freezing in liquid nitrogen and subsequent thawing for determination of ψs +m. This feature improves the accuracy of determining ψp, which is calculated as ψw − ψs + m. The device can operate with minimal quantities of plant material and allows determination of all three components (ψw, ψs + m, ψp) for the same sample.  相似文献   

9.
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential.  相似文献   

10.
11.
A leaf disc method for measuring cuticular conductance   总被引:3,自引:3,他引:0  
This paper describes a new method for the measurement of cuticularconductance (go;) using a leaf disc sealed in a specially-designedenvelope. Conductances for astomatous (adaxial) and stomatous(abaxial) surfaces of beech {Fagus sylvatica L.) were determinedfrom measurements of water flux. Leaf discs were punched outfrom attached leaves and placed inside individual envelopesthat provided a water supply. Water flux from an exposed epidermalsurface of the leaf discs was measured gravimetrically. Allmeasurements were made under darkness. Conductance of the adaxialsurface was referred to as gc, whereas conductance of the abaxialsurface was considered as a minimum leaf surface conductance()- The main advantage of this method is that it enables measurement of gc and from leaf samples with intact cuticles and a highrelative water content [RWC) for periods of up to 12 d. Conductancesof leaf discs in envelopes were compared with those of wholeleaves and leaf discs without envelopes. Data demonstratinga strong positive relationship between conductance and RWC ispresented. Key words: Cuticular conductance, leaf disc, relative water content  相似文献   

12.
Abstract. Cuticular resistance to water vapour diffusion is an important aspect of thermocouple psychrometry and may introduce significant error in the measurement of leaf water potential (Ψ). The effect of the citrus (Citrus mitis Blanco) leaf cuticle on water vapour movement was studied using the times required for vapour pressure equilibration during thermocouple psychrometric measurement of Ψ. Cuticular abrasion with various carborundum powders was used to reduce the diffusive resistance of both the adaxial and abaxial leaf surfaces, and the extent of the disruption to the leaf was investigated with light and electron microscopy. Cuticular abrasion resulted in reduced equilibration times due to decreased cuticular resistance and greater water vapour movement between the leaf and the psychrometer chamber. Equilibration times were reduced from over 5 h in the unabraded control leaves to 1 h with cuticle abrasion. This was associated with the decrease in diffusive resistance with cuticular abrasion from over 55 s cm?1 to less than 8 s cm?1 for both the adaxial and abaxial leaf surfaces. Scanning electron micrographs of the abraded leaf tissue revealed considerable disruption of the stomatal ledge and of the guard cells, surface smoothing and displacement of waxes into the stomatal aperture, and damage to veins. Observations with the transmission electron microscope revealed frequent disruption of epidermal cell walls, and damage to both the cytoplasmic and vacuolar membranes.  相似文献   

13.
Acclimation of photosynthesis to low leaf water potentials   总被引:12,自引:9,他引:12       下载免费PDF全文
Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl.  相似文献   

14.
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements.  相似文献   

15.
Leaf water potential (Ψleaf) determinations were made on excised leaf samples using a commercial dew point hygrometer (Wescor Inc., Logan, Utah) and a thermocouple psychrometer operated in the isopiestic mode. With soybean leaves (Glycine max L.), there was good agreement between instruments; equilibration times were 2 to 3 hours. With cereals (Triticum aestivum L. and Hordeum vulgare L.), agreement between instruments was poor for moderately wilted leaves when 7-mm-diameter punches were used in the hygrometer and 20-mm slices were used in the psychrometer, because the Ψleaf values from the dew point hygrometer were too high. Agreement was improved by replacing the 7-mm punch samples in the hygrometer by 13-mm slices, which had a lower cut edge to volume ratio. Equilibration times for cereals were normally 6 to 8 hours. Spuriously high Ψleaf values obtained with 7-mm leaf punches may be associated with the ion release and reabsorption that occur upon tissue excision; such errors evidently depend both on the species and on tissue water status.  相似文献   

16.
17.
A theoretical analysis of the transient temperature responses of a heated thermocouple and its surroundingin vivo tissue is described. The model includes the effects of local blood perfusion, metabolic heat generation and blood pooling. The solutions presented are generalized for pulsed heating in the probe region. Inspection of these solutions reveals that for accurate experimental results precise knowledge of the tissue's thermal conductivity is necessary but that blood pooling around the probe may sometimes be regarded as an insignificant parameter.  相似文献   

18.
The progressive changes in measured water potential and the time to equilibration was investigated forPinus elliotii varelliotii needles in thermocouple psychrometer chambers held at 15°C, 22.5°C, and 30°C. Needles at 30°C appeared to loose semi-permeable membrane integrity after 14 hours. Needles held at 22.5°C had similar problems after 48 hours while those at 15°C were not affected. time to equilibrium was shortest at 30°C and longest at 15°C.Ethanol in the chambers had the same effect on measured water potential as did >14 hours at 30°C. Needle color, chamber odor, and pattern of measured water potential suggested an anaerobic condition in the chamber was the cause of reduced membrane integrity.Journal series paper No 7187 of the Florida, Agric. Exp. Sta.At the time the work was in progress the senior author was a graduate research assistant at University of Florida.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号