首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Amino Acid Transport in Pseudomonas aeruginosa   总被引:15,自引:8,他引:7       下载免费PDF全文
Properties of the transport systems for amino acids in Pseudomonas aeruginosa were investigated. Exogenous (14)C-labeled amino acids were shown to equilibrate with the internal native amino acid pool prior to incorporation into protein. When added at low external concentrations, the majority of the amino acids examined entered the protein of the cell unaltered. The rates of amino acid transport, established at low concentrations with 18 commonly occurring amino acids, varied as much as 40-fold. The transport process became saturated at high external amino acid concentrations, was temperature-sensitive, and was inhibited by sodium azide and iodoacetamide. Intracellular to extracellular amino acid ratios of 100- to 300-fold were maintained during exponential growth of the population in a glucose minimal medium. When the medium became depleted of glucose, neither extracellular nor intracellular amino acids could be detected.  相似文献   

2.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

3.
Uptake of L-2,4-diaminobutyric acid (DABA), a positively charged analogue of gamma-aminobutyric acid (GABA), by a synaptosomal fraction isolated from rat brain occurred with a Km of 54 +/- 12 microM and a Vmax of 1.3 +/- 0.2 nmol/min/mg protein. The transport of DABA was inhibited competitively by GABA whereas that of GABA was affected in the same manner by addition of DABA. The maximal accumulation of DABA ([DABA]i/[DABA]c) was observed to increase as the second power of the transmembrane electrical potential ([K+]i/[K+]e) and the first power of the sodium ion concentration gradient. These findings indicate that DABA is transported on the GABA carrier with a net charge of +2, where one charge is provided by the cotransported Na+ and the second is contributed by the amino acid itself. Since uptake of GABA, an electroneutral molecule, is accompanied by transfer of two sodium ions, the results obtained with DABA suggest that one of the sodium binding sites on the GABA transporter is in proximity to the amino acid binding site.  相似文献   

4.
Kinetics of Neutral Amino Acid Transport Across the Blood-Brain Barrier   总被引:12,自引:8,他引:12  
Neutral amino acid (NAA) transport across the blood-brain barrier was examined in pentobarbital-anesthetized rats with an in situ brain perfusion technique. Fourteen of 16 plasma NAAs showed measurable affinity for the cerebrovascular NAA transport system. Values of the transport constants (Vmax, Km, KD) were determined for seven large NAAs from saturation studies, whereas Km values for five small NAAs were estimated from inhibition studies. These data, together with our previous work, provide a complete set of constants for prediction of NAA influx from plasma. Among the NAAs, Vmax varied at least fivefold and Km varied approximately 700 fold. The apparent affinity (1/Km) of each NAA was related linearly (r = 0.910) to the octanol/water partition coefficient, a measure of NAA side-chain hydrophobicity. Predicted influx values from transport constants and average plasma concentrations agree well with values measured using plasma perfusate. These results provide accurate new estimates of the kinetic constants that determine NAA transport across the blood-brain barrier. Furthermore, they suggest that affinity of a L-alpha-amino acid for the transport system is determined primarily by side-chain hydrophobicity.  相似文献   

5.
L-Alanine and 3-O-methyl-D-glucose accumulation by mucosal strips from rabbit ileum has been investigated with particular emphasis on the interaction between Na and these transport processes. L-Alanine is rapidly accumulated by mucosal tissue and intracellular concentrations of approximately 50 mM are reached within 30 min when extracellular L-alanine concentration is 5 mM. Evidence is presented that intracellular alanine exists in an unbound, osmotically active form and that accumulation is an active transport process. In the absence of extracellular Na, the final ratio of intracellular to extracellular L-alanine does not differ significantly from unity and the rate of net uptake is markedly inhibited. Amino acid accumulation is also inhibited by 5 x 10-5 M ouabain. 3-O-methyl-D-glucose accumulation by this preparation is similarly affected by ouabain and by incubation in a Na-free medium. The effects of amino acid accumulation, of ouabain, and of incubation in a Na-free medium on cell water content and intracellular Na and K concentrations have also been investigated. These results are discussed with reference to the two hypotheses which have been suggested to explain the interaction between Na and intestinal nonelectrolyte transport.  相似文献   

6.
7.
Uptake of [14C] alanine, arginine, glutamic acid and phenylalanine by Trypanosoma equiperdum occurred by both a mediated mechanism and diffusion. Twenty amino acids were studied as inhibitors of absorption of the above amino acids. Results suggested that at least 4 distinct transport loci are involved in amino acid transport. These 4 loci have overlapping affinities for amino acids and seem to be involved, respectively, in the absorption of (a) arginine and phenylalanine; (b) arginine; (c) alanine, phenylalanine, and glutamic acid; (d) glutamic acid. The data also showed that multiple sites for substrate binding occur on each of 2 transport systems.  相似文献   

8.
Influx of phenylalanine across the brush border of rabbit intestine is markedly reduced by treatment with 5 mM p-chloromercuriphenyl sulfonate (PCMBS). The effect is rapidly and completely reversed by dithiothreitol. Phenylalanine influx into PCMBS-treated tissue can be competitively inhibited by other neutral amino acids and follows saturation kinetics. PCMBS causes an increase in the apparent Michaelis constant from the value observed in control tissue but does not alter the maximal influx significantly. Treatment of the tissue with PCMBS leads to a significant reduction in the Na-sensitivity of the transport, and a number of results indicate that the major effect of the reagent is to cause a marked reduction in the affinity of the transport system for Na. The transport system can be partially protected against reaction with PCMBS by phenylalanine and tryptophan but not by methionine or norleucine. The results suggest that PCMBS reacts with a sulfhydryl group in the region of the transport site and may alter conformational changes associated with the binding of substrates.  相似文献   

9.
10.
We studied amino acid transport in sheep red blood cells (RBCs) as a function of cell maturation. Transport of amino acids is decreased strikingly in the mature mammalian RBC compared to the immature reticulocyte. Blood obtained 5-6 days after massive bleeding was fractionated on dextran gradients. In the mature erythrocyte amino acids are taken up only slowly, and in the normal experimental interval (60 min) the concentration in the cell does not reach that of the medium. In contrast, the reticulocyte-rich (top) fraction (50-90% reticulocytes) accumulates certain amino acids, particularly histidine, methionine, and leucine. The underlying process is ATP-independent and Na+-insensitive, and has properties consistent with exchange diffusion, i.e., accelerated uptake or efflux when unlabeled solute is present on the trans side. The process is apparent not only in intact cells but also in resealed ghosts. The decrease in activity of amino acid transport is a function of red cell maturation. Thus it can be shown that (a) separation of cells according to their density 1, 2, and 3 weeks after bleeding leads to progressively lower amino acid transport activity with increasing cell density; and (b) during in vitro long-term incubation at 37°C of reticulocyte-rich, unfractionated blood (5–10% reticulocytes), amino acid transport decreases while red cell integrity is maintained, as evidenced by the retention of a normal K+ gradient and the absence of hemolysis. The progressive loss is seen with resealed ghosts as well as with intact cells. Not all the amino acids examined participate in this exchange process. The most actively exchanged are histidine, leucine, methionine, and phenylalanine. Glycine, proline, arginine, and a-amino isobutyric acid do not participate in the exchange process.  相似文献   

11.
The effect of semistarvation on small intestinal transport of D-glucose, L-valine, and NaCl was studied in an in vitro system of isolated rat brush border membrane vesicles. Whereas semistarvation enhanced the transport rate for L-valine by 19-29%, there was no change in D-glucose transport. When energy in the form of a NaSCN gradient was supplied to the membrane vesicles prepared from semistarved animals, L-valine was concentrated to a greater extent than those from well-fed animals. Strain differences were observed in the manner semistarvation affected NaCl transport across the brush border membrane. Semistarvation increased the NaCl transport rate by a factor of 3.5 in one rat strain and not at all in another. These results provide a partial explanation for the cellular basis of elevated neutral amino acid absorption by the small intestine in semistarvation.  相似文献   

12.
SYNOPSIS. Uptake of 14C-labeled alanine, glutamate, lysine, methionine, proline, and phenylalanine by Trypanosoma equiperdum during 2-minute incubations occurred by diffusion and membrane-mediated processes. Amino acid metabolism was not detected by paper chromatography of trypanosome extracts. Most of 18 carbohydrates tested for ability to alter amino acid transport neither changed nor significantly inhibited transport. Glucose, however, stimulated glutamate, lysine and proline transport; fructose stimulated lysine uptake and 2-deoxy-D-glucose increased phenylalanine and methionine absorption. No evidence was found that the carbohydrates acted by binding to amino acid transport “sites.” Glucose inhibition of alanine, phenylalanine, and methionine uptake was linked to glycolysis. The rapid formation of alanine from glucose stimulated alanine release and, when glycolysis was blocked, glucose no longer inhibited alanine transport. Methionine and phenylalanine release was also stimulated by glucose. Glucose changed the ability of lysine, glutamate, and proline to inhibit each others’uptake, indicating that certain amino acids are preferentially absorbed by respiring cells. Analysis of free pool amino acid levels suggested that some amino acid transport systems in T. equiperdum are linked in such a way to glycolysis as to control the cell concentrations of these amino acids.  相似文献   

13.
Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex equaled 9.7 X 10(-4) mumol/s/g for Vmax, 0.054 mumol/ml for Km, and 1.0 X 10(-4) ml/s/g for KD in the absence of competing amino acids. Saturable influx could be reduced by greater than 85% by either L-phenylalanine or 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with transport by the cerebrovascular neutral amino acid transport system. The transport Km for ACHC was one-fifth that for the more commonly used homologue, 1-aminocyclopentanecarboxylic acid, and was similar to values for several natural amino acids, such as L-methionine, L-isoleucine, and L-tyrosine. The results indicate that ACHC may be a useful probe for in vivo studies of amino acid transport into brain.  相似文献   

14.
The amino acid composition of endosperm cavity sap and of sieve tube saps from the flag leaf, peduncle, rachis, grain pedicel, and grain were determined for wheat plants just past the mid-half of grain filling. On a mole percent basis, glutamine accounted for almost half of the amino acids in sieve tube sap from the peduncle and ear. Other protein amino acids, plug γ-aminobutyrate, were present in varying, but mostly low (a few mole percent) proportions. The amino acid composition of phloem exudate resembled that of the mature wheat grain. The proportions of amino acids in the endosperm cavity were generally similar to those of the sieve tube sap supplying the grain. Cysteine, however, while virtually absent from sieve tube sap, comprised 1 to 2 mole percent of amino acids in the endosperm cavity, suggesting it is transported in a different form. Also, alanine and, to a lesser extent, glutamate were relatively more prominent in endosperm cavity sap than in the sieve tube sap. Thus, while most amino acids were more concentrated in the sieve tube sap than in the endosperm cavity sap, alanine and glutamate appeared to be moving from the sieve tube to the endosperm cavity in the absence of, or perhaps even against, their concentration gradients.  相似文献   

15.
Tabtoxinine-β-lactam (T-β-L), a unique amino acid, is a toxin produced by several closely related pathovars of Pseudomonas syringae. These chlorosis-inducing pathogens establish themselves in the apoplastic space of their hosts where they release the toxin. We have examined the transport of T-β-L into cultured corn (Zea mays cv Black Mexican) cells using [14C]T-β-L. The pH optimum of the uptake of the toxin was between 4.0 and 5.5 pH units. Toxin uptake was inhibited by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone, and by the sulfhydryl re-agent, N-ethylmaleimide. Tabtoxinine-β-lactam transport exhibited saturation kinetics that were described by the Michaelis-Menton equation for toxin concentrations of 1 millimolar and less. However, the transport of toxin in concentrations greater than 1 millimolar was not described by Michaelis-Menten kinetics. Glutamate and alanine exhibited similar transport kinetics with a transition to non-Michaelis-Menten kinetics when the amino acid concentration exceeded 1 millimolar. Hill numbers for glutamate, alanine, and T-β-L ranged from 0.6 to 0.8. Methionine, alanine, tyrosine, glutamine, glutamate, and arginine were inhibitors of toxin transport. Alanine was a competitive inhibitor of the transport of T-β-L and of glutamate. The data are consistent with T-β-L being transported into the plant cell through an amino acid transport system.  相似文献   

16.
17.
Abstract: The delivery of large neutral amino acids (LNAAs) to brain across the blood-brain barrier (BBB) is mediated by the L-type neutral amino acid transporter present in the membranes of the brain capillary endothelial cell. In experimental animals, the L-system transporter is saturated under normal conditions, and therefore an elevation in the plasma concentration of one LNAA will reduce brain uptake of others. In this study, we used positron emission tomography (PET) to determine the effect of elevated plasma phenylalanine concentrations on the uptake of an artificial neutral amino acid, [11C]-aminocyclohexanecarboxylate ([11C]ACHC), in human brain. PET scans were performed on six normal male subjects after an overnight fast and again 60 min after oral administration of 100 mg/kg of phenylalanine. The plasma phenylalanine concentration increased by an average of 11-fold between the first and second scans. This increase produced a reduction in [11C]ACHC uptake in all brain regions but not in scalp. The mean ± SD influx rate constant for whole brain decreased after phenylalanine ingestion from 0.036 ± 0.002 to 0.019 ± 0.004 ml/g/min. Kinetic analysis of the effect of plasma phenylalanine concentration on the rate of [11C]ACHC uptake is compatible with a model of competitive inhibition so that large increases in the concentration of one LNAA in plasma will reduce the brain uptake of other LNAAs across the human BBB.  相似文献   

18.
The specificity of the neutral amino acid transport system in the brush border was examined by studying the ability of amino acid analogues to inhibit the unidirectional influx of phenylalanine from mucosal solution into the cells. Effects were evaluated in terms of the affinity of various substrates for the amino acid site in the transport system. The affinity of amino acids for the site was proportional to the number of carbon atoms in the side chain. Electron-withdrawing substituents in the ring of phenylalanine increased affinity and electron-releasing groups decreased affinity. Removal of the α-amino group from phenylalanine decreased affinity by a factor of approximately 50 and removal of the carboxyl group decreased affinity 12-fold. Effects on affinity of variations in the side chain of the amino acid can be comparable in magnitude to that of the carboxyl group. The effect of sodium ion on the transport system appears to be similar for all compounds tested.  相似文献   

19.
Abstract: Since protein synthesis in the developing brain may, under certain conditions, be limited by amino acid availability, the present studies were undertaken to characterize the kinetics of large neutral amino acid transport through the blood-brain barrier (BBB) of the newborn rabbit. The Km, Vmax, and KD of the transport of eight amino acids were determined by a nonlinear regression analysis of data obtained with the carotid injection technique. Compared with kinetic parameters observed for the adult rat, the Km, Vmax, and KD of amino acid transport were all two- to threefold higher in the newborn. Albumin was found to bind tryptophan actively in vitro , but had no inhibitory effect on tryptophan transport through the newborn BBB. Glutamine was transported through the BBB of the newborn at rates severalfold higher than are seen in the adult rat. However, glutamine transport was not inhibited by high concentrations of N -methylaminoisobutyric acid (NMAIB), a model amino acid that is specific for the alanine-preferring or A-system present in peripheral tissues. In conclusion, these studies show that the BBB neutral amino acid transport system of the newborn rabbit has a lower affinity and higher capacity than does the BBB of the adult rat. Under conditions of high plasma amino acids, the increased capacity of the newborn transport system allows for a higher rate of amino acid transport into brain than would occur via the lower capacity system present in the adult rat brain.  相似文献   

20.
SYNOPSIS. Filter-feeding invertebrates are exposed to a smallbut continuous source of potential foodstuffs in the form ofdissolved free amino acids (DFAA). Studies with two genera ofbivalve molluscs, Mytilus and Modiolus, indicate the existenceof carrier-mediated transport processes for DFAA, and that theseprocesses are capable of a net accumulation of substrate fromexternal solution. The kinetics of DFAA transport in bivalvegill, the primary organ for uptake, reveal these processes tobe well-adapted for the efficient utilization of substrate atthe extremely low concentrations (approximately 1 µM)characteristic of the water column: Michaelis constants foruptake are in the micromolar range, resulting in transport ratesthat are a significant fraction of the maximum capacity of thesystem. Comparison of potential rates of DFAA accumulation torates of oxidative metabolism suggest that DFAA can serve asan important nutritional supplement to these animals. Futurework should emphasize new analytical procedures, including theuse of high performance liquid chromatography, to identify levelsof DFAA in specific environments and rates of net DFAA uptakeinto organisms from these habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号