首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.  相似文献   

2.
Recent findings of sequence convergence in the Prestin gene among some bats and cetaceans suggest that parallel adaptations for high-frequency hearing have taken place during the evolution of echolocation. To determine if this gene is an exception, or instead similar processes have occurred in other hearing genes, we have examined Tmc1 and Pjvk, both of which are associated with non-syndromic hearing loss in mammals. These genes were amplified and sequenced from a number of mammalian species, including echolocating and non-echolocating bats and whales, and were analysed together with published sequences. Sections of both genes showed phylogenetic signals that conflicted with accepted species relationships, with coding regions uniting laryngeal echolocating bats in a monophyletic clade. Bayesian estimates of posterior probabilities of convergent and divergent substitutions provided more direct evidence of sequence convergence between the two groups of laryngeal echolocating bats as well as between echolocating bats and dolphins. We found strong evidence of positive selection acting on some echolocating bat species and echolocating cetaceans, contrasting with purifying selection on non-echolocating bats. Signatures of sequence convergence and molecular adaptation in two additional hearing genes suggest that the acquisition of high-frequency hearing has involved multiple loci.  相似文献   

3.
4.
The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly.  相似文献   

5.
Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.  相似文献   

6.
Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida''s Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels.  相似文献   

7.
Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients.  相似文献   

8.
Sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene have been shown to be useful for species identification in various groups of animals. However, the DNA barcoding approach has never been tested on African fruit bats of the family Pteropodidae (Mammalia, Chiroptera). In this study, the COI gene was sequenced from 120 bats collected in the Central African Republic and belonging to either Epomophorus?gambianus or Micropteropus?pusillus, two species easily diagnosed on the basis of morphological characters, such as body size, skull shape and palatal ridges. Two additional molecular markers were used for comparisons: the complete mitochondrial cytochrome b gene and the intron 7 of the nuclear β-fibrinogen (FGB) gene. Our results reveal an unexpected discordance between mitochondrial and nuclear genes. The nuclear FGB signal agrees with our morphological identifications, as the three alleles detected for E.?gambianus are divergent from the fourteen alleles found for M.?pusillus. By contrast, this taxonomic distinction is not recovered with the analyses of mitochondrial genes, which support rather a polyphyletic pattern for both species. The conflict between molecular markers is explained by multiple mtDNA introgression events from M.?pusillus into E.?gambianus or, alternatively, by incomplete lineage sorting of mtDNA haplotypes associated with positive selection on FGB alleles of M.?pusillus. Our work shows the failure of DNA barcoding to discriminate between two morphologically distinct fruit bat species and highlights the importance of using both mitochondrial and nuclear markers for taxonomic identification.  相似文献   

9.
Shen YY  Liang L  Li GS  Murphy RW  Zhang YP 《PLoS genetics》2012,8(6):e1002788
The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.  相似文献   

10.
Changes in behaviour may initiate shifts to new adaptive zones, with physical adaptations for novel environments evolving later. While new mutations are commonly considered engines of adaptive change, sensory evolution enabling access to new resources might also arise from standing genetic diversity, and even gene loss. We examine the relative contribution of molecular adaptations, measured by positive and relaxed selection, acting on eye‐expressed genes associated with shifts to new adaptive zones in ecologically diverse bats from the superfamily Noctilionoidea. Collectively, noctilionoids display remarkable ecological breadth, from highly divergent echolocation to flight strategies linked to specialized insectivory, the parallel evolution of diverse plant‐based diets (e.g., nectar, pollen and fruit) from ancestral insectivory, and—unusually for echolocating bats—often have large, well‐developed eyes. We report contrasting levels of positive selection in genes associated with the development, maintenance and scope of visual function, tracing back to the origins of noctilionoids and Phyllostomidae (the bat family with most dietary diversity), instead of during shifts to novel diets. Generalized plant visiting was not associated with exceptional molecular adaptation, and exploration of these novel niches took place in an ancestral phyllostomid genetic background. In contrast, evidence for positive selection in vision genes was found at subsequent shifts to either nectarivory or frugivory. Thus, neotropical noctilionoids that use visual cues for identifying food and roosts, as well as for orientation, were effectively preadapted, with subsequent molecular adaptations in nectar‐feeding lineages and the subfamily Stenodermatinae of fig‐eating bats fine‐tuning pre‐existing visual adaptations for specialized purposes.  相似文献   

11.
Genomic and genetic methods allow investigation of how frequently the same genes are used by different populations during adaptive evolution, yielding insights into the predictability of evolution at the genetic level. We estimated the probability of gene reuse in parallel and convergent phenotypic evolution in nature using data from published studies. The estimates are surprisingly high, with mean probabilities of 0.32 for genetic mapping studies and 0.55 for candidate gene studies. The probability declines with increasing age of the common ancestor of compared taxa, from about 0.8 for young nodes to 0.1–0.4 for the oldest nodes in our study. Probability of gene reuse is higher when populations begin from the same ancestor (genetic parallelism) than when they begin from divergent ancestors (genetic convergence). Our estimates are broadly consistent with genomic estimates of gene reuse during repeated adaptation to similar environments, but most genomic studies lack data on phenotypic traits affected. Frequent reuse of the same genes during repeated phenotypic evolution suggests that strong biases and constraints affect adaptive evolution, resulting in changes at a relatively small subset of available genes. Declines in the probability of gene reuse with increasing age suggest that these biases diverge with time.  相似文献   

12.
Hagfish eyes are markedly basic compared to the eyes of other vertebrates, lacking a pigmented epithelium, a lens and a retinal architecture built of three cell layers: the photoreceptors, interneurons and ganglion cells. Concomitant with hagfish belonging to the earliest-branching vertebrate group (the jawless Agnathans), this lack of derived characters has prompted competing interpretations that hagfish eyes represent either a transitional form in the early evolution of vertebrate vision, or a regression from a previously elaborate organ. Here, we show the hagfish retina is not extensively degenerating during its ontogeny, but instead grows throughout life via a recognizable PAX6+ ciliary marginal zone. The retina has a distinct layer of photoreceptor cells that appear to homogeneously express a single opsin of the RH1 rod opsin class. The epithelium that encompasses these photoreceptors is striking because it lacks the melanin pigment that is universally associated with animal vision; notwithstanding, we suggest this epithelium is a homologue of gnathosome retinal pigment epithelium (RPE) based on its robust expression of RPE65 and its engulfment of photoreceptor outer segments. We infer that the hagfish retina is not entirely rudimentary in its wiring, despite lacking a morphologically distinct layer of interneurons: multiple populations of cells exist in the hagfish inner retina and subsets of these express markers of vertebrate retinal interneurons. Overall, these data clarify Agnathan retinal homologies, reveal characters that now appear to be ubiquitous across the eyes of vertebrates, and refine interpretations of early vertebrate visual system evolution.  相似文献   

13.
Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.  相似文献   

14.
Evolving eyes     
Despite the incredible diversity among extant eyes, laws of physics constrain how light can be collected resulting in only eight known optical systems in animal eyes. Surprisingly, all animal eyes share a common molecular strategy using opsin for catching photons, but there are a diverse collection of mechanisms with proteins unrelated to each other used to focus light for vision. However, opsin is expressed in either one of two types of photoreceptor that differ fundamentally in their structure and tissue of origin. Taken together, this collection of observations strongly suggests that eyes have had multiple origins with remarkable convergence due to physics and molecular conservation of the opsin protein. Yet recent work has shown that a family of conserved genes are involved in eye formation despite substantial differences in their structure and origin, leading to a controversy over whether eyes evolved once or repeatedly. A likely resolution of this discussion is that particular genes and genetic programs have become associated with specific features needed for eyes and such suites of genes have been recruited as new eyes evolve. Since specific genes and their products are used repeatedly, it is somewhat difficult to conceptualize their causal relationships relative to evolutionary processes. However, detailed comparison of developmental programs may offer clues about multiple origins.  相似文献   

15.
Fifteen species of neotropical and three species of paleotropical bats are known either to roost in or to make tents in over 80 species of vascular plants. We summarize the current knowledge of bat-tent architecture, report two new styles of tents (conical and apical) from the Paleotropics, compare the similarity in tents constructed, or used, by neotropical and paleotropical bats, and consider possible functions of tents. Seven styles of tents are known from the Neotropics, three (conical, palmate umbrella, and apical tents) are known from both the Neo- and the Paleotropics, and one (stem tent) is unique to the Paleotropics. In the Neotropics tent-roosting and/or tent-making appears to be a behavior unique to the diverse microchiropteran family Phyllostomidae (subfamily Phyllostomatinae: tribe Stenodermatini), and in the Paleotropics two members of the megachiropteran family Pteropodidae and one member of the microchiropteran family Vespertilionidae are known to construct or roost in tents. Despite the variety of plant taxa used by bats in tent construction, there appears to be a limited number of different leaf forms that can be altered by bats and used as tents. We suggest that the similarity in tent architecture observed among the neotropical and paleotropical bats is a consequence of convergence in leaf morphology among forest understory plants. The congruence in tent-making/roosting behavior observed in members of the Stenodermatini and the Pteropodidae (genusCynopterus) suggests a phylogenetic influence on these behaviors. The similarity in tent-making and/or tent-roosting behavior and life-history traits (small, <70 g, mostly foliage-roosting frugivores) among these divergent neotropical and paleotropical taxa supports a convergence hypothesis in which members of these groups have become ecological equivalents. Although actual tent-making has been observed in only one bat species to date, we suggest that the principal selective force leading to the evolution of tent-making is a polygynous mating system whereby males construct tents to gain access to females. Tents in turn provide resources that offer protection from predators and inclement weather.  相似文献   

16.
Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.  相似文献   

17.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

18.
Adaptive radiations are defined as rapid diversification with phenotypic innovation led by colonization to new environments. Notably, adaptive radiations can occur in parallel when habitats with similar selective pressures are accessible promoting convergent adaptions. Although convergent evolution appears to be a common process, it is unclear what are the main drivers leading the reappearance of morphologies or ecological roles. We explore this question in Myotis bats, the only Chiropteran genus with a worldwide distribution. Three foraging strategies—gleaning, trawling, and aerial netting—repeatedly evolved in several regions of the world, each linked to characteristic morphologies recognized as ecomorphs. Phylogenomic, morphometric, and comparative approaches were adopted to investigate convergence of such foraging strategies and skull morphology as well as factors that explain diversification rates. Genomic and morphometric data were analyzed from ~80% extant taxa. Results confirm that the ecomorphs evolved multiple times, with trawling evolving more often and foliage gleaning most recently. Skull morphology does not reflect common ancestry and evolves convergently with foraging strategy. Although diversification rates have been roughly constant across the genus, speciation rates are area‐dependent and higher in taxa with temperate distributions. Results suggest that in this species‐rich group of bats, first, stochastic processes have led divergence into multiple lineages. Then, natural selection in similar niches has promoted repeated adaptation of phenotypes and foraging strategies. Myotis bats are thus a remarkable case of ecomorphological convergence and an emerging model system for investigating the genomic basis of parallel adaptive radiation.  相似文献   

19.
The Drosophila Bolwig organs are small photoreceptor bundles that facilitate the phototactic behavior of the larva. Comparative literature suggests that these highly reduced visual organs share evolutionary ancestry with the adult compound eye. A recent molecular genetic study produced the first detailed account of the mechanisms controlling differential opsin expression and photoreceptor subtype determination in these enigmatic eyes of the Drosophila larva. Here, the evolutionary implications are examined, taking into account the dynamic diversification of opsin genes and the spatial regulation of opsin homolog expression in other insects. It is concluded that, consistent with their common evolutionary roots, the Drosophila larval and adult eyes use the same mechanisms for the regulation of opsin expression and photoreceptor cell fate specification. Strikingly, the structurally highly derived Bolwig organs retained a more ancestral state of opsin expression and regulation. Inconspicuous in size, the Drosophila larval eyes deliver useful lessons in the reconstruction of homology between neuronal cell types with gene expression data, and on the conservative nature of gene regulatory network evolution during the emergence of novel organs from ancestral templates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号