首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In randomized trials, an analysis of covariance (ANCOVA) is often used to analyze post-treatment measurements with pre-treatment measurements as a covariate to compare two treatment groups. Random allocation guarantees only equal variances of pre-treatment measurements. We hence consider data with unequal covariances and variances of post-treatment measurements without assuming normality. Recently, we showed that the actual type I error rate of the usual ANCOVA assuming equal slopes and equal residual variances is asymptotically at a nominal level under equal sample sizes, and that of the ANCOVA with unequal variances is asymptotically at a nominal level, even under unequal sample sizes. In this paper, we investigated the asymptotic properties of the ANCOVA with unequal slopes for such data. The estimators of the treatment effect at the observed mean are identical between equal and unequal variance assumptions, and these are asymptotically normal estimators for the treatment effect at the true mean. However, the variances of these estimators based on standard formulas are biased, and the actual type I error rates are not at a nominal level, irrespective of variance assumptions. In equal sample sizes, the efficiency of the usual ANCOVA assuming equal slopes and equal variances is asymptotically the same as those of the ANCOVA with unequal slopes and higher than that of the ANCOVA with equal slopes and unequal variances. Therefore, the use of the usual ANCOVA is appropriate in equal sample sizes.  相似文献   

2.
The classical normal-theory tests for testing the null hypothesis of common variance and the classical estimates of scale have long been known to be quite nonrobust to even mild deviations from normality assumptions for moderate sample sizes. Levene (1960) suggested a one-way ANOVA type statistic as a robust test. Brown and Forsythe (1974) considered a modified version of Levene's test by replacing the sample means with sample medians as estimates of population locations, and their test is computationally the simplest among the three tests recommended by Conover , Johnson , and Johnson (1981) in terms of robustness and power. In this paper a new robust and powerful test for homogeneity of variances is proposed based on a modification of Levene's test using the weighted likelihood estimates (Markatou , Basu , and Lindsay , 1996) of the population means. For two and three populations the proposed test using the Hellinger distance based weighted likelihood estimates is observed to achieve better empirical level and power than Brown-Forsythe's test in symmetric distributions having a thicker tail than the normal, and higher empirical power in skew distributions under the use of F distribution critical values.  相似文献   

3.
We studied the fulfilment of assumptions of normality and homogeneity of error variance, prior to application of analysis of variance (ANOVA), for in vitro clonal propagation data. We assessed the use of data transformations and mean values for situations when the original data did not satisfy the required assumptions. The purpose of the study was to establish whether the use of original, transformed or mean values had any effect on F values, significance levels and clonal heritability values. The F values, significance levels and values of clonal heritability obtained showed analysis of variance to be reliable, despite deviations with respect to normality and homogeneity of variance and despite the fact that samples sizes were unequal. Original data may be used for ANOVA applied to measured variables such as number of shoots per explant, length of tallest shoot, number of 1-cm segments per explant and also derived variables such as the multiplication coefficient. Frequency data can be used for analysis of variance of categorical-type variables such as apical necrosis and percentage of responsive explant. For shoot colour variables, the distributions were very skewed and the variances were very different, but even though the sample sizes were not identical in all cases, lack of homogeneity of variance did not significantly affect F values, significance levels or clonal heritability values, and thus analysis of variance may be applied to the original data. The use of original and frequency data makes interpretation of the results easier than when transformed data are used and also allows us to calculate variance components more accurately than when using mean values, which do not provide as much information. Clonal heritability values from transformed data and mean values showed differences of less than one hundredth compared with those from original data. Box–Cox-transformed data showed slightly lower heritability values than those corresponding to original data, whereas clonal heritability values from both mean data and angular-transformed data were slightly higher than those obtained using original data. In clonal variability studies with single growth medium, nutritional conditions that encouraged highly unequal growth or characteristics among clones gave rise to data that were unlikely to satisfy the conditions of normality or homogeneity of variance.  相似文献   

4.
For continuous variables of randomized controlled trials, recently, longitudinal analysis of pre- and posttreatment measurements as bivariate responses is one of analytical methods to compare two treatment groups. Under random allocation, means and variances of pretreatment measurements are expected to be equal between groups, but covariances and posttreatment variances are not. Under random allocation with unequal covariances and posttreatment variances, we compared asymptotic variances of the treatment effect estimators in three longitudinal models. The data-generating model has equal baseline means and variances, and unequal covariances and posttreatment variances. The model with equal baseline means and unequal variance–covariance matrices has a redundant parameter. In large sample sizes, these two models keep a nominal type I error rate and have high efficiency. The model with equal baseline means and equal variance–covariance matrices wrongly assumes equal covariances and posttreatment variances. Only under equal sample sizes, this model keeps a nominal type I error rate. This model has the same high efficiency with the data-generating model under equal sample sizes. In conclusion, longitudinal analysis with equal baseline means performed well in large sample sizes. We also compared asymptotic properties of longitudinal models with those of the analysis of covariance (ANCOVA) and t-test.  相似文献   

5.
When primary endpoints of randomized trials are continuous variables, the analysis of covariance (ANCOVA) with pre-treatment measurements as a covariate is often used to compare two treatment groups. In the ANCOVA, equal slopes (coefficients of pre-treatment measurements) and equal residual variances are commonly assumed. However, random allocation guarantees only equal variances of pre-treatment measurements. Unequal covariances and variances of post-treatment measurements indicate unequal slopes and, usually, unequal residual variances. For non-normal data with unequal covariances and variances of post-treatment measurements, it is known that the ANCOVA with equal slopes and equal variances using an ordinary least-squares method provides an asymptotically normal estimator for the treatment effect. However, the asymptotic variance of the estimator differs from the variance estimated from a standard formula, and its property is unclear. Furthermore, the asymptotic properties of the ANCOVA with equal slopes and unequal variances using a generalized least-squares method are unclear. In this paper, we consider non-normal data with unequal covariances and variances of post-treatment measurements, and examine the asymptotic properties of the ANCOVA with equal slopes using the variance estimated from a standard formula. Analytically, we show that the actual type I error rate, thus the coverage, of the ANCOVA with equal variances is asymptotically at a nominal level under equal sample sizes. That of the ANCOVA with unequal variances using a generalized least-squares method is asymptotically at a nominal level, even under unequal sample sizes. In conclusion, the ANCOVA with equal slopes can be asymptotically justified under random allocation.  相似文献   

6.
Count data are common endpoints in clinical trials, for example magnetic resonance imaging lesion counts in multiple sclerosis. They often exhibit high levels of overdispersion, that is variances are larger than the means. Inference is regularly based on negative binomial regression along with maximum‐likelihood estimators. Although this approach can account for heterogeneity it postulates a common overdispersion parameter across groups. Such parametric assumptions are usually difficult to verify, especially in small trials. Therefore, novel procedures that are based on asymptotic results for newly developed rate and variance estimators are proposed in a general framework. Moreover, in case of small samples the procedures are carried out using permutation techniques. Here, the usual assumption of exchangeability under the null hypothesis is not met due to varying follow‐up times and unequal overdispersion parameters. This problem is solved by the use of studentized permutations leading to valid inference methods for situations with (i) varying follow‐up times, (ii) different overdispersion parameters, and (iii) small sample sizes.  相似文献   

7.
Investigating differences between means of more than two groups or experimental conditions is a routine research question addressed in biology. In order to assess differences statistically, multiple comparison procedures are applied. The most prominent procedures of this type, the Dunnett and Tukey-Kramer test, control the probability of reporting at least one false positive result when the data are normally distributed and when the sample sizes and variances do not differ between groups. All three assumptions are non-realistic in biological research and any violation leads to an increased number of reported false positive results. Based on a general statistical framework for simultaneous inference and robust covariance estimators we propose a new statistical multiple comparison procedure for assessing multiple means. In contrast to the Dunnett or Tukey-Kramer tests, no assumptions regarding the distribution, sample sizes or variance homogeneity are necessary. The performance of the new procedure is assessed by means of its familywise error rate and power under different distributions. The practical merits are demonstrated by a reanalysis of fatty acid phenotypes of the bacterium Bacillus simplex from the “Evolution Canyons” I and II in Israel. The simulation results show that even under severely varying variances, the procedure controls the number of false positive findings very well. Thus, the here presented procedure works well under biologically realistic scenarios of unbalanced group sizes, non-normality and heteroscedasticity.  相似文献   

8.
Horn M  Vollandt R  Dunnett CW 《Biometrics》2000,56(3):879-881
Laska and Meisner (1989, Biometrics 45, 1139-1151) dealt with the problem of testing whether an identified treatment belonging to a set of k + 1 treatments is better than each of the other k treatments. They calculated sample size tables for k = 2 when using multiple t-tests or Wilcoxon-Mann-Whitney tests, both under normality assumptions. In this paper, we provide sample size formulas as well as tables for sample size determination for k > or = 2 when t-tests under normality or Wilcoxon-Mann-Whitney tests under general distribution assumptions are used.  相似文献   

9.
Permutation test is a popular technique for testing a hypothesis of no effect, when the distribution of the test statistic is unknown. To test the equality of two means, a permutation test might use a test statistic which is the difference of the two sample means in the univariate case. In the multivariate case, it might use a test statistic which is the maximum of the univariate test statistics. A permutation test then estimates the null distribution of the test statistic by permuting the observations between the two samples. We will show that, for such tests, if the two distributions are not identical (as for example when they have unequal variances, correlations or skewness), then a permutation test for equality of means based on difference of sample means can have an inflated Type I error rate even when the means are equal. Our results illustrate permutation testing should be confined to testing for non-identical distributions. CONTACT: calian@raunvis.hi.is.  相似文献   

10.
This report explores how the heterogeneity of variances affects randomization tests used to evaluate differences in the asymptotic population growth rate, λ. The probability of Type I error was calculated in four scenarios for populations with identical λ but different variance of λ: (1) Populations have different projection matrices: the same λ may be obtained from different sets of vital rates, which gives room for different variances of λ. (2) Populations have identical projection matrices but reproductive schemes differ and fecundity in one of the populations has a larger associated variance. The two other scenarios evaluate a sampling artifact as responsible for heterogeneity of variances. The same population is sampled twice, (3) with the same sampling design, or (4) with different sampling effort for different stages. Randomization tests were done with increasing differences in sample size between the two populations. This implies additional differences in the variance of λ. The probability of Type I error keeps at the nominal significance level (α = .05) in Scenario 3 and with identical sample sizes in the others. Tests were too liberal, or conservative, under a combination of variance heterogeneity and different sample sizes. Increased differences in sample size exacerbated the difference between observed Type I error and the nominal significance level. Type I error increases or decreases depending on which population has a larger sample size, the population with the smallest or the largest variance. However, by their own, sample size is not responsible for changes in Type I errors.  相似文献   

11.
A method for estimating and comparing population genetic variation using random amplified polymorphic DNA (RAPD) profiling is presented. An analysis of molecular variance (AMOVA) is extended to accomodate phenotypic molecular data in diploid populations in Hardy-Weinberg equilibrium or with an assumed degree of selfing. We present a two step strategy: 1) Estimate RAPD site frequencies without preliminary assumptions on the unknown population structure, then perform significance testing for population substructuring. 2) If population structure is evident from the first step, use this data to calculate better estimates for RAPD site frequencies and sub-population variance components. A nonparametric test for the homogeneity of molecular variance (HOMOVA) is also presented. This test was designed to statistically test for differences in intrapopulational molecular variances (heteroscedasticity among populations). These theoretical developments are applied to a RAPD data set in Vaccinium macrocarpon (American cranberry) using small sample sizes, where a gradient of molecular diversity is found between central and marginal populations. The AMOVA and HOMOVA methods provide flexible population analysis tools when using data from RAPD or other DNA methods that provide many polymorphic markers with or without direct allelic data.  相似文献   

12.
Six different sampling methods to estimate the density of the cassava green mite, Mononychellus tanajoa, are categorized according to whether leaves or leaflets are used as secondary sampling units and whether the number of leaves on the sampled plants are enumerated, estimated from an independent plant sample, or not censused at all. In the last case, sampling can provide information only on the average number of mites per leaf and its variance, while information on stratum sizes is necessary to estimate the mean number of mites per plant as well. It is shown that leaflet-sampling is as reliable as leaf-sampling for the same number of sampling units. When stratum sizes are estimated from a separate plant sample, sampling time may also be reduced, but the estimated mean density and its variance may be biased if mite density and plant size are correlated. Sampling data show that the within-plant variance contributes relatively little to the overall variance of the population density estimates. It points at a sampling strategy in which the number of primary units (plants) is as large as possible at the expense of secondary units (leaflets) per plant. Mean-variance relationships may be applied to estimate sample variances and can be used even when only one leaflet is taken per plant per stratum. An unequal allocation of primary units among strata can increase precision, but the gain is small compared with an equal allocation. Leaf area can be predicted from the length of the longest leaflet and the number of leaflets.  相似文献   

13.
Several asymptotic tests were proposed for testing the null hypothesis of marginal homogeneity in square contingency tables with r categories. A simulation study was performed for comparing the power of four finite conservative conditional test procedures and of two asymptotic tests for twelve different contingency schemes for small sample sizes. While an asymptotic test proposed by STUART (1955) showed a rather satisfactory behaviour for moderate sample sizes, an asymptotic test proposed by BHAPKAR (1966) was quite anticonservative. With no a priori information the performance of (r - 1) simultaneous conditional binomial tests with a Bonferroni adjustment proved to be a quite efficient procedure. With assumptions about where to expect the deviations from the null hypothesis, other procedures favouring the larger or smaller conditional sample sizes, respectively, can have a great efficiency. The procedures are illustrated by means of a numerical example from clinical psychology.  相似文献   

14.
A common goal in statistical ecology is to compare several communities and or time points with respect to taxonomic diversity (usually species diversity). For this purpose, the current literature recommends the application of traditional ANOVA techniques to “replicates” of diversity indices. This approach is not even asymptotically correct because diversity index estimates have unequal variances, even when sample sizes are equal and even when the hypothesis of equality of diversity indices is true. It is shown that transformations of the data can not be used to remedy this situation. We construct an asymptotically correct method and illustrate its implementation using dinosaur extinction data.  相似文献   

15.
There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the “working correlation structure” is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two‐group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs—exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster.  相似文献   

16.
Summary Procedures for ranking candidates for selection and for estimating genetic and environmental parameters when variances are heterogeneous are discussed. The best linear unbiased predictor (BLUP) accounts automatically for heterogeneous variance provided that the covariance structure is known and that the assumptions of the model hold. Under multivariate normality BLUP allowing for heterogeneous variance maximizes expected genetic progress. Examples of application of BLUP to selection when residual or genetic variances are heterogeneous are given. Restricted maximum likelihood estimation of heterogeneous variances and covariances via the expectation-maximization algorithm is presented.  相似文献   

17.
In studies of morphology, methods for comparing amounts of variability are often important. Three different ways of utilizing determinants of covariance matrices for testing for surplus variability in a hypothesis sample compared to a reference sample are presented: an F-test based on standardized generalized variances, a parametric bootstrap based on draws on Wishart matrices, and a nonparametric bootstrap. The F-test based on standardized generalized variances and the Wishart-based bootstrap are applicable when multivariate normality can be assumed. These methods can be applied with only summary data available. However, the nonparametric bootstrap can be applied with multivariate nonnormally distributed data as well as multivariate normally distributed data, and small sample sizes. Therefore, this method is preferable when raw data are available. Three craniometric samples are used to present the methods. A Hungarian Zalavár sample and an Austrian Berg sample are compared to a Norwegian Oslo sample, the latter employed as reference sample. In agreement with a previous study, it is shown that the Zalavár sample does not represent surplus variability, whereas the Berg sample does represent such a surplus variability.  相似文献   

18.
The traditional quantitative genetics model was used as the unifying approach to derive six existing and new definitions of genomic additive and dominance relationships. The theoretical differences of these definitions were in the assumptions of equal SNP effects (equivalent to across-SNP standardization), equal SNP variances (equivalent to within-SNP standardization), and expected or sample SNP additive and dominance variances. The six definitions of genomic additive and dominance relationships on average were consistent with the pedigree relationships, but had individual genomic specificity and large variations not observed from pedigree relationships. These large variations may allow finding least related genomes even within the same family for minimizing genomic relatedness among breeding individuals. The six definitions of genomic relationships generally had similar numerical results in genomic best linear unbiased predictions of additive effects (GBLUP) and similar genomic REML (GREML) estimates of additive heritability. Predicted SNP dominance effects and GREML estimates of dominance heritability were similar within definitions assuming equal SNP effects or within definitions assuming equal SNP variance, but had differences between these two groups of definitions. We proposed a new measure of genomic inbreeding coefficient based on parental genomic co-ancestry coefficient and genomic additive correlation as a genomic approach for predicting offspring inbreeding level. This genomic inbreeding coefficient had the highest correlation with pedigree inbreeding coefficient among the four methods evaluated for calculating genomic inbreeding coefficient in a Holstein sample and a swine sample.  相似文献   

19.
MOTIVATION: Microarray techniques provide a valuable way of characterizing the molecular nature of disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation of variability difficult, since variance estimates made on a gene by gene basis will have few degrees of freedom, and the assumption that all genes share equal variance is unlikely to be true. RESULTS: We propose a model by which the within gene variances are drawn from an inverse gamma distribution, whose parameters are estimated across all genes. This results in a test statistic that is a minor variation of those used in standard linear models. We demonstrate that the model assumptions are valid on experimental data, and that the model has more power than standard tests to pick up large changes in expression, while not increasing the rate of false positives. AVAILABILITY: This method is incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). SUPPLEMENTARY MATERIAL: ftp://linus.nci.nih.gov/pub/techreport/RVM_supplement.pdf  相似文献   

20.
The mixed-model factorial analysis of variance has been used in many recent studies in evolutionary quantitative genetics. Two competing formulations of the mixed-model ANOVA are commonly used, the “Scheffe” model and the “SAS” model; these models differ in both their assumptions and in the way in which variance components due to the main effect of random factors are defined. The biological meanings of the two variance component definitions have often been unappreciated, however. A full understanding of these meanings leads to the conclusion that the mixed-model ANOVA could have been used to much greater effect by many recent authors. The variance component due to the random main effect under the two-way SAS model is the covariance in true means associated with a level of the random factor (e.g., families) across levels of the fixed factor (e.g., environments). Therefore the SAS model has a natural application for estimating the genetic correlation between a character expressed in different environments and testing whether it differs from zero. The variance component due to the random main effect under the two-way Scheffe model is the variance in marginal means (i.e., means over levels of the fixed factor) among levels of the random factor. Therefore the Scheffe model has a natural application for estimating genetic variances and heritabilities in populations using a defined mixture of environments. Procedures and assumptions necessary for these applications of the models are discussed. While exact significance tests under the SAS model require balanced data and the assumptions that family effects are normally distributed with equal variances in the different environments, the model can be useful even when these conditions are not met (e.g., for providing an unbiased estimate of the across-environment genetic covariance). Contrary to statements in a recent paper, exact significance tests regarding the variance in marginal means as well as unbiased estimates can be readily obtained from unbalanced designs with no restrictive assumptions about the distributions or variance-covariance structure of family effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号