首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transferred. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens.  相似文献   

4.
5.
6.
7.
8.
The hypersensitive response and pathogenicity (hrp) genes of Dickeya dadantii 3937 encode a type III secretion system (T3SS) which is essential for its full virulence. Previous studies of the T3SS regulation in D. dadantii 3937 revealed that the expression of the hrp genes is regulated by a master regulator, HrpL, through the HrpX-HrpY-HrpS-HrpL and GacS-GacA-rsmB-RsmA pathways. In this work, we identified a novel regulator of the SlyA/MarR family, SlyA, which regulates hrp genes of the HrpL regulon in parallel with HrpL in D. dadantii. SlyA regulates the T3SS in a two-tier manner. It negatively regulates the expression of hrpL by downregulating hrpS and upregulating rsmA. Interestingly, concomitant with its downregulation of the hrpL, SlyA positively regulates the expression of hrpA and hrpN, two hrp genes located in the HrpL regulon. In contrast to Pectobacterium carotovorum, the expression of slyA is not controlled by ExpR and ExpI in D. dadantii 3937. We further show that SlyA is involved in controlling swimming motility and pellicle formation in D. dadantii 3937.  相似文献   

9.
10.
11.
Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes.  相似文献   

12.
AIMS: To identify enterococci isolated from sheep milk cheese--bryndza, and to compare differences in the composition of enterococcal microflora affected by the season, and to evaluate the potential presence of vancomycin resistance and virulence determinants. METHODS AND RESULTS: Bacterial strains were isolated during analysis of bryndza cheese and identified on the genus and species level by phenotypic methods and with commercial biochemical sets. The identification of the species, Enterococcus faecium, Ent. durans and Ent. faecalis, was confirmed by PCR using species-specific primers for ddl genes. PCR was also used for assessment of presence of vanA and vanB genes and virulence determinants gelE, agg and cytolysin genes namely: cylL(L), cylL(S), cylM, cylB and cylA. Among 308 Enterococcus sp. strains, 177 isolates were proved to be Ent. faecium, 59 to be Ent. durans and 41 to be Ent. faecalis. Vancomycin resistance genes vanA and vanB were not detected. Agar plate testing confirmed their absence. Gene gelE, however, was found in 20 Ent. faecalis isolates, but only 13 of them showed gelatinase-positive phenotype. Seven isolates had five cytolysin genes, but none of the isolates exhibited a positive haemolytic phenotype. Four isolates possessed the agg gene. The prevalence of Ent. faecium species was highest in samples from the winter season harvest. CONCLUSIONS: Ent. faecium is the dominant enterococcal species in bryndza cheese and the most prevalent in the winter season product. None of the Enterococcus sp. strains was proved to have vanA or vanB genes and the vancomycin resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report of enterococcal microflora in bryndza cheese and its evaluation for the presence of vanA and vanB genes as well as virulence determinants.  相似文献   

13.
14.
15.
16.
AIMS: The aim of this study was to investigate the frequency of enterococcal virulence factors among human intestinal Enterococcus faecalis strains and to find out whether the pattern differs from that seen in published reports on food and clinical isolates. METHODS AND RESULTS: The E. faecalis isolates were cultured from human faecal samples obtained from five ulcerative colitis patients in remission phase. The species identification was based on API120 strips and species-specific PCR primers. The isolates were further characterized using the pulsed-field gel electrophoresis. The presence of seven different known enterococcal virulence factors among the confirmed E. faecalis isolates were screened using PCR techniques and published primers. CONCLUSIONS: Among the 35 isolates representing nine different pulsotypes the most frequent virulence factors were cpd (33 isolates), agg (25 isolates), gelE (22 isolates) and esp (15 isolates). No complete sets of genes associated for the production of functional cytolysin were encountered indicating that intestinal enterococci may differ in this respect from clinical strains. SIGNIFICANCE AND IMPACT OF THE STUDY: According to the results, the commensal enterococcal strains appear to differ from clinical isolates in their complement of presumed virulence factors.  相似文献   

17.
18.
19.
A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential.  相似文献   

20.
A proteomic analysis of a wild-type and of a phoB mutant showed that Vibrio cholerae expresses genes of two major regulons in response to phosphate starvation. The Pho regulon, expressed by the wild-type, allowed the cells to adapt to the new environment. Induction of the general stress regulon was mainly observed in the phoB mutant as a strategy to resist stress and survive. Some functions of the adaptative and survival responses play roles in the pathogenicity of the bacteria. Among the members of the Pho regulon, we found a porin described as an important factor for the intestinal colonisation. Other functions not obviously related to phosphate metabolism, expressed preferentially by the wild-type cells, have also been implicated in virulence. These findings might explain the lack of virulence of the phoB mutant. The Pho regulon picture of V. cholerae, however, will not be complete until minor members and membrane proteins are identified. Among the phosphate-starvation induced genes we have found 13 hypothetical ones and for some of them functions have been assigned. The majority of the genes identified here have not been described before, thus they could be used to expand the proteomic reference map of V. cholerae El Tor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号