首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated.

Methods

A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity.

Results

Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL.

Conclusions

Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.  相似文献   

2.
The numerous pores in the basement membrane (BM) of the intestinal villi are essential for the communication of enterocytes with cells in the lamina propria, an important mechanism for the induction of intestinal immune responses. The intestinal epithelial barrier is affected by the mycotoxin deoxynivalenol (DON) from both the apical (luminal) and basolateral (serosal) side. The pig is the most susceptible species to the anorectic and immune-modulating effects of DON, which is most prevalent in crops. We analysed in pigs the effect of DON-contaminated feed on the composition and perforation of the BM and the presence of CD16+ cells or their dendrites in the epithelium. In addition to in vivo experiments, in vitro studies were carried out. Using microarray analyses, the effects of DON on IPEC-J2 cells were studied with the focus on the BM. Our in vivo results showed in the control pigs: (1) a significant increased pore number (p?≤?0.001) in the jejunum in comparison to ileum, (2) no difference in the pore size, and (3) comparable frequency of intraepithelial CD16+ cells/dendrites in the jejunum and ileum. There was a marked trend that DON feeding increases: (1) the pore number in jejunum, and (2) the number of CD16+ cells/dendrites in the epithelium (Tukey–Kramer; p?=?0.055 and p?=?0.067, respectively). The in vivo results were extended with microarray analyses of epithelial cell (IPEC-J2 cells). The down-regulation of genes like syndecan, fibulin 6 and BM-40 was observed. These proteins are important factors in the BM composition and in formation of pores. Our results provide evidence that already low basolateral concentrations of DON (50 ng/mL) influence the production of the BM protein laminin by epithelial cells. Thus, DON affects the composition of the BM.  相似文献   

3.
Barrier dysfunction in inflammatory bowel diseases implies enhanced paracellular flux and lowered transepithelial electrical resistance (TER) causing effective invasion of enteropathogens or altered intestinal absorption of toxins and drug compounds. To elucidate the role of matriptase-driven cell surface proteolysis in the maintenance of intestinal barrier function, the 3-amidinophenylalanine-derived matriptase inhibitor, MI-432 was used on porcine IPEC-J2 cell monolayer. Studies with two fluorescent probes revealed that short (2 h) treatment with MI-432 caused an altered distribution of oxidative species between intracellular and extracellular spaces in IPEC-J2 cells. This perturbation was partially compensated when administration of inhibitor continued for up to 48 h. Significant decrease in TER between apical and basolateral compartments of MI-432-treated IPEC-J2 cell monolayers proved that matriptase is one of the key effectors in the maintenance of barrier integrity. Changes in staining pattern of matriptase and in localization of the junctional protein occludin were observed suggesting that inhibition of matriptase by MI-432 can also exert an effect on paracellular gate opening via modulation of tight junctional protein assembly. This study confirms that non-tumorigenic IPEC-J2 cells can be used as an appropriate small intestinal model for the in vitro characterization of matriptase-related effects on intestinal epithelium. These findings demonstrate indirectly that matriptase plays a pivotal role in the development of barrier integrity; thus matriptase dysfunction can facilitate the occurence of leaky gut syndrome observed in intestinal inflammatory diseases.  相似文献   

4.
Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells.  相似文献   

5.
The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.  相似文献   

6.
We wish to understand how organ-specific structures assemble during embryonic development. In the present paper, we consider what determines the subapical position of the terminal web in the intestinal cells of the nematode Caenorhabditis elegans. The terminal web refers to the organelle-depleted, intermediate filament-rich layer of cytoplasm that underlies the apical microvilli of polarized epithelial cells. It is generally regarded as the anchor for actin rootlets protruding from the microvillar cores. We demonstrate that: (i) the widely used monoclonal antibody MH33 reacts (only) with the gut-specific intermediate filament protein encoded by the ifb-2 gene; (ii) IFB-2 protein accumulates near the gut lumen beginning at the lima bean stage of embryogenesis and remains associated with the gut lumen into adulthood; and (iii) as revealed by immunoelectron microscopy, IFB-2 protein is confined to a discrete circumferential subapical layer within the intestinal terminal web (known in nematodes as the "endotube"); this layer joins directly to the apical junction complexes that connect adjacent gut cells. To investigate what determines the disposition of the IFB-2-containing structure as the terminal web assembles during development, RNAi was used to remove the functions of gene products previously shown to be involved in the overall apicobasal polarity of the developing gut cell. Removal of dlg-1, ajm-1, or hmp-1 function has little effect on the overall position or continuity of the terminal web IFB-2-containing layer. In contrast, removal of the function of the let-413 gene leads to a basolateral expansion of the terminal web, to the point where it can now extend around the entire circumference of the gut cell. The same treatment also leads to concordant basolateral expansion of both gut cell cortical actin and the actin-associated protein ERM-1. LET-413 has previously been shown to be basolaterally located and to prevent the basolateral expansion of several individual apical proteins. In the present context, we conclude that LET-413 is also necessary to maintain the entire terminal web or brush border assembly at the apical surface of C. elegans gut cells, a dramatic example of the so-called "fence" function ascribed to epithelial cell junctions. On the other hand, LET-413 is not necessary to establish this apical location during early development. Finally, the distance at which the terminal web intermediate filament layer lies beneath the gut cell surface (both apical and basolateral) must be determined independently of apical junction position.  相似文献   

7.

Background and Aims

Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium.

Methodology

By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium.

Results

A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON.

Conclusion

These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.  相似文献   

8.
Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER) and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ) proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS) or species-specific (porcine serum, PS) conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS), compared to conventional FBS culture (IPEC-J2/FBS), the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line’s initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.  相似文献   

9.
Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (Fcytosol/Fnucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells.  相似文献   

10.
The mycotoxin deoxynivalenol (DON) contaminates agricultural commodities worldwide, posing health threats to humans and animals. Associated with DON are derivatives, such as deepoxy-deoxynivalenol (DOM-1), produced by enzymatic transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Using differentiated porcine intestinal epithelial cells (IPEC-J2), we provide the first multi-parameter comparative cytotoxicity analysis of DON and DOM-1, based on the parallel evaluation of lysosomal activity, total protein content, membrane integrity, mitochondrial metabolism and ATP synthesis. The study investigated the ability of DON and—for the first time of its metabolite DOM-1—to induce apoptosis, mitogen-activated protein kinase (MAPK) signalling, oxidative events and alterations of mitochondrial structure in porcine intestinal epithelial cells (IECs). The degree of DON toxicity strongly varied, depending on the cytotoxicity parameter evaluated. DON compromised viability according to the parameters of lysosomal activity, total protein content and membrane integrity, but increased viability according to assays based on mitochondrial metabolism and ATP synthesis. DON induced expression of cleaved caspase-3 (maximum induction 3.9-fold) and MAPK p38 and p42/p44 (maximum induction 2.51- and 2.30-fold, respectively). DON altered mitochondrial morphology, but did not increase intracellular ROS. DOM-1-treated IPEC-J2 remained unaffected at equimolar concentrations in all assays, thereby confirming the safety of feed additives using DON- to DOM-1-transforming bacteria. The study additionally highlights that an extensive multi-parameter analysis significantly contributes to the quality of in vitro data.  相似文献   

11.
Epithelial tubes perform functions that are essential for the survival of multicellular organisms. Understanding how their polarised features are maintained is therefore crucial. By analysing the function of the clathrin adaptor AP-1 in the C. elegans intestine, we found that AP-1 is required for epithelial polarity maintenance. Depletion of AP-1 subunits does not affect epithelial polarity establishment or the formation of the intestinal lumen. However, the loss of AP-1 affects the polarised distribution of both apical and basolateral transmembrane proteins. Moreover, it triggers de novo formation of ectopic apical lumens between intestinal cells along the lateral membranes later during embryogenesis. We also found that AP-1 is specifically required for the apical localisation of the small GTPase CDC-42 and the polarity determinant PAR-6. Our results demonstrate that AP-1 controls an apical trafficking pathway required for the maintenance of epithelial polarity in vivo in a tubular epithelium.  相似文献   

12.
Clostridium difficile infection of the intestinal epithelium and consequent pseudomembranous colitis is an important cause of morbidity and mortality. Pathogenesis has been ascribed exclusively to toxin production. Using in vitro models of human intestinal epithelial layers, we show that exposure to toxigenic C. difficile upregulates epithelial expression of IL-8 and ICAM-1, two molecules important in neutrophil chemoattraction and adhesion and subsequent inflammation. IL-8 production was also stimulated by toxin-containing supernatants. C difficile induced IL-8 release was inhibited by specific antiserum. Increased ICAM-1 expression only occurred after basolateral exposure to C. difficile while apical exposure had no effect on ICAM-1 expression. However, transepithelial electrical resistance was impaired by apical exposure to bacterial suspensions. We suggest that apical exposure to C. difficile induces changes in epithelial layer integrity which allows the bacteria and/or the toxin access to the basolateral compartment where pathogenic inflammatory mechanisms are activated.  相似文献   

13.
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions1. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.  相似文献   

14.
Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified.  相似文献   

15.
The transmissible gastroenteritis coronavirus (TGEV) infects the epithelial cells of the intestinal tract of pigs, resulting in a high mortality rate in piglets. This study shows the interaction of TGEV with a porcine epithelial cell line. To determine the site of viral entry, LLC-PK1 cells were grown on permeable filter supports and infected with TGEV from the apical or basolateral side. Initially after plating, the virus was found to enter the cells from both sides. During further development of cell polarity, however, the entry became restricted to the apical membrane. Viral entry could be blocked by a monoclonal antibody to the viral receptor aminopeptidase N. Confocal laser scanning microscopy showed that this receptor protein was present at both the apical and basolateral plasma membrane domains just after plating of the cells but that it became restricted to the apical plasma membrane during culture. To establish the site of viral release, the viral content of the apical and basolateral media of apically infected LLC-PK1 cells was measured by determining the amount of radioactively labelled viral proteins and infectious viral particles. We found that TGEV was preferentially released from the apical plasma membrane. This conclusion was confirmed by electron microscopy, which demonstrated that newly synthesized viral particles attached to the apical membrane. The results support the idea that the rapid lateral spread of TGEV infection over the intestinal epithelia occurs by the preferential release of virus from infected epithelial cells into the gut lumen followed by efficient infection of nearby cells through the apical domain.  相似文献   

16.
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta‐heavy dimers) produces tissue overgrowth and mis‐regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM‐domain protein Expanded (Ex). Apical beta‐heavy Spectrin binds to Ex and co‐localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.  相似文献   

17.
Mycobacterium avium is a common pathogen in AIDS patients that is primarily (but not exclusively) acquired through the gastrointestinal tract, leading to the development of bacteraemia and disseminated disease. To cause infection through the gut, binding and invasion of the intestinal epithelial barrier are required. To characterize this process further, we determined the cell surface(s) (basolateral vs. apical membrane) that M. avium interacts with in intestinal mucosal cells in vitro . The level of binding and invasion of both HT-29 and Caco-2 intestinal cell monolayers by M. avium were similar when the assay was performed with control medium in the presence of Ca2+ (when only the apical surface was exposed), with Ca2+-depleted medium or with Ca2+-depleted medium + 1 mM EGTA (exposure of both apical and basolateral membranes), suggesting that the bacterium enters the apical surface of the epithelial lining. These observations were confirmed by assays in a transwell system and by using fluorescent microscopy. Real-time video microscopy showed that M. avium entry was not associated with membrane ruffling and the use of pharmacological inhibitors of the small GTPases demonstrated that M. avium invasion is dependent on the activation of the small GTPases Rho, but not on Rac or Cdc42. Passage of M. avium through HT-29 cells led to a phenotypic change (intracellular growth; IG) that was associated with a significantly greater (between five- and ninefold) ability to bind to and invade new monolayers of epithelial cells or macrophages when compared with the invasion by M. avium grown on agar (extracellular growth; EG). IG phenotype invasion of HT-29 cells also takes place only by the apical surface. M. avium enters intestinal epithelial cells by the apical surface and, once within the cells, changes phenotype, becoming more invasive towards both macrophages and other epithelial cells.  相似文献   

18.
Flagellin, the structural component of bacterial flagella, is secreted by pathogenic and commensal bacteria. Flagellin activates proinflammatory gene expression in intestinal epithelia. However, only flagellin that contacts basolateral epithelial surfaces is proinflammatory; apical flagellin has no effect. Pathogenic Salmonella, but not commensal Escherichia coli, translocate flagellin across epithelia, thus activating epithelial proinflammatory gene expression. Investigating how epithelia detect flagellin revealed that cell surface expression of Toll-like receptor 5 (TLR5) conferred NF-kappaB gene expression in response to flagellin. The response depended on both extracellular leucine-rich repeats and intracellular Toll/IL-1R homology region of TLR5 as well as the adaptor protein MyD88. Furthermore, immunolocalization and cell surface-selective biotinylation revealed that TLR5 is expressed exclusively on the basolateral surface of intestinal epithelia, thus providing a molecular basis for the polarity of this innate immune response. Thus, detection of flagellin by basolateral TLR5 mediates epithelial-driven inflammatory responses to Salmonella.  相似文献   

19.
Glycerophospholipids are known to be hydrolyzed in the intestinal lumen into free fatty acids and lysophospholipids that are then absorbed by the intestinal epithelial cells. A monolayer of enterocyte-differentiated Caco-2 cell is often used to assess the intestinal bioavailability of nutrients. In this study, we examined how differentiated Caco-2 cells process lysoglycerolipids such as lysophosphatidylcholine (LPC). Our findings were twofold. (1) Caco-2 cells secreted both a lysophospholipase A-like enzyme and a glycerophosphocholine-phosphodiesterase enzyme into the apical, but not basolateral, lumen, suggesting that food-derived LPC is converted to a free fatty acid, sn-glycerol-3-phosphate, and choline through two sequential enzymatic reactions in humans. The release of the latter enzyme was differentiation-dependent. (2) Fatty acid-releasing activities toward exogenous fluorescent LPC, lysophosphatidic acid and monoacylglycerol were shown to be higher on the apical membranes of Caco-2 cells than on the basolateral membranes. These results suggest that human intestinal epithelial cells metabolize lysoglycerolipids by two distinct mechanisms involving secreted or apical-selective expression of metabolic enzymes.  相似文献   

20.
Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pre-treatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号