首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin A and its analogs (retinoids) have acquired particular significance in embryonic development since the discovery that retinoic acid (RA) possesses properties of an endogenous morphogen and that embryonic tissues contain specific nuclear receptors for RA. Since the mammalian embryo does not synthesize RA de novo but rather must acquire it directly or in a precursor form from the maternal circulation, we sought to establish the relationship between levels of RA, retinol, and retinyl esters in the maternal system and their acquisition by the embryo, particularly during organogenesis in the mouse. Results indicate profound changes in maternal vitamin A levels during pregnancy in the mouse. These changes were characterized by a large, transient decrease in plasma retinol levels coincident with the period of organogenesis (e.g. gestational Days 9-14), and an apparent increase in mobilization from hepatic stores to the conceptus. During organogenesis, the embryo exhibited a steady increase in retinol levels with little increase in retinyl esters and virtually no change in RA. Analysis of retinoid accumulation patterns in the embryonic liver indicate that functional onset of vitamin A storage occurs by mid-organogenesis. In contrast, placental levels of these retinoids remained unchanged throughout organogenesis. Analysis of the conceptus as a developmental unit revealed that during early organogenesis the majority of retinoids are contained in the placenta (8-fold more than in the embryo). However, by mid-organogenesis the retinoid content of the embryo exceeds that of the placenta. Together, these results provide evidence that pregnancy in the mouse is accompanied by pronounced alterations in maternal retinoid homeostasis that occur coincident with the period of high embryonic sensitivity to exogenous retinoids.  相似文献   

2.
Lecithin:retinol acyltransferase (LRAT) is believed to be the predominant if not the sole enzyme in the body responsible for the physiologic esterification of retinol. We have studied Lrat-deficient (Lrat-/-) mice to gain a better understanding of how these mice take up and store dietary retinoids and to determine whether other enzymes may be responsible for retinol esterification in the body. Although the Lrat-/- mice possess only trace amounts of retinyl esters in liver, lung, and kidney, they possess elevated (by 2-3-fold) concentrations of retinyl esters in adipose tissue compared with wild type mice. These adipose retinyl ester depots are mobilized in times of dietary retinoid insufficiency. We further observed an up-regulation (3-4-fold) in the level of cytosolic retinol-binding protein type III (CRBPIII) in adipose tissue of Lrat-/- mice. Examination by electron microscopy reveals a striking total absence of large lipid-containing droplets that normally store hepatic retinoid within the hepatic stellate cells of Lrat-/- mice. Despite the absence of significant retinyl ester stores and stellate cell lipid droplets, the livers of Lrat-/- mice upon histologic analysis appear normal and show no histological signs of liver fibrosis. Lrat-/- mice absorb dietary retinol primarily as free retinol in chylomicrons; however, retinyl esters are also present within the chylomicron fraction obtained from Lrat-/- mice. The fatty acyl composition of these (chylomicron) retinyl esters suggests that they are synthesized via an acyl-CoA-dependent process suggesting the existence of a physiologically significant acyl-CoA:retinol acyltransferase.  相似文献   

3.
The developing mammalian embryo is entirely dependent on the maternal circulation for its supply of retinoids (vitamin A and its metabolites). The mechanisms through which mammalian developing tissues maintain adequate retinoid levels in the face of suboptimal or excessive maternal dietary vitamin A intake have not been established. We investigated the role of retinyl ester formation catalyzed by lecithin:retinol acyltransferase (LRAT) in regulating retinoid homeostasis during embryogenesis. Dams lacking both LRAT and retinol-binding protein (RBP), the sole specific carrier for retinol in serum, were maintained on diets containing different amounts of vitamin A during pregnancy. We hypothesized that the lack of both proteins would make the embryo more vulnerable to changes in maternal dietary vitamin A intake. Our data demonstrate that maternal dietary vitamin A deprivation during pregnancy generates a severe retinoid-deficient phenotype of the embryo due to the severe retinoid-deficient status of the double mutant dams rather than to the lack of LRAT in the developing tissues. Moreover, in the case of excessive maternal dietary vitamin A intake, LRAT acts together with Cyp26A1, one of the enzymes that catalyze the degradation of retinoic acid, and possibly with STRA6, the recently identified cell surface receptor for retinol-RBP, in maintaining adequate levels of retinoids in embryonic and extraembryonic tissues. In contrast, the pathway of retinoic acid synthesis does not contribute significantly to regulating retinoid homeostasis during mammalian development except under conditions of severe maternal retinoid deficiency.  相似文献   

4.
Retinoids are important signalling molecules in the development of limbs and in the determination of the anterior-posterior orientation of the embryo. The present study examined the content and distribution of retinoic acid, retinol and retinyl esters in porcine embryos during early gestation (gestation days 22-30) macroscopically and microscopically by its autofluorescence and by HPLC. Macroscopically, the yellowish-greenish autofluorescence characteristic of vitamin A was observed in tissues affected by morphogenesis, such as the limbs, in a spatial and temporal manner. Changes in the intensity of autofluorescence in the limbs paralleled changes in the concentration of retinoids in these structures. In the limbs and the body, retinol, retinyl palmitate, and all-trans-retinoic acid but neither the isomers of all-trans retinoic acid nor other retinoid metabolites were detected. In addition, the distribution of specific retinoid-binding proteins was investigated; these are involved in vitamin A transport, metabolism and signal transduction. Immunoreactive retinol-binding protein as well as cellular retinoic acid binding protein type I were only localised in the mesonephros, while the retinoid X receptor beta was widely distributed in most of the tissues and organs of the embryo throughout the time period investigated. The combination of autofluorescence and HPLC analysis allowed for the first time to attribute the yellowish-greenish autofluorescence in specific regions of the embryo to vitamin A, and offers a method to study the local cellular distribution of retinol and/or retinyl esters as well as their concentrations in embryonic tissues.  相似文献   

5.
The redistribution of rat chylomicron retinoids following incubation with fasting- or postheparin human plasma was investigated. With fasting plasma, chylomicron retinol appeared among higher density lipoprotein acceptors and density greater than 1.21 gm/ml plasma proteins; only small amounts of retinyl ester were found therein. With postheparin plasma, retinyl ester-containing chylomicron remnants with densities spanning the low- and high density lipoprotein distributions were generated; appreciable quantities of retinyl esters appeared among rho greater than 1.019 lipoproteins only in the presence of postheparin plasma. These observations are consistent with the conservation of retinyl esters, but not retinol, among chylomicrons and their catabolic products.  相似文献   

6.
Hepatic stellate cells store the majority of the liver's retinoid (vitamin A) reserves as retinyl esters in stellate cell lipid droplets. A study was conducted to explore the effects of differences in dietary retinoid and triglyceride intake on the composition of the stellate cell lipid droplets. Weanling rats were placed on one of five diets that differed in retinoid or triglyceride contents. The dietary groups were: 1) control (2.4 mg retinol (as retinyl acetate)/kg diet and 20.5% of the calories supplied by triglyceride (as peanut oil]; 2) low retinol (0.6 mg retinol/kg diet and control triglyceride levels); 3) high retinol (24 mg retinol/kg diet and control triglyceride levels); 4) low triglyceride (2.4 mg retinol/kg diet and 5% of the calories supplied by triglyceride); and 5) high triglyceride (2.4 mg retinol/kg diet and 45% of the calories supplied by triglyceride). Stellate cells were isolated using the pronase-collagenase method and stellate cell lipid droplets were isolated by differential centrifugation. The levels of retinoids and other lipids were measured by high performance liquid chromatography. The stellate cells from control rats contained 113 micrograms total lipid/10(6) cells. Control stellate cell lipid droplets had the following mean percent lipid composition: 39.5% retinyl ester; 31.7% triglyceride; 15.4% cholesteryl ester; 4.7% cholesterol; 6.3% phospholipids; and 2.4% free fatty acids. Both the concentration of stellate cell lipids and the composition of stellate cell lipid droplets were markedly altered by changes in dietary retinoid. The low and high retinol groups contained, respectively, 82 and 566 micrograms total lipid/10(6) cells, with retinyl ester representing, respectively, 13.6% and 65.4% of the lipid present in the stellate cell lipid droplets. Low and high triglyceride groups were similar to controls in both stellate cell lipid content and the composition of the stellate cell lipid droplets. These findings indicate that the composition of stellate cell lipid droplets is strongly regulated by dietary retinoid status but not by dietary triglyceride intake.  相似文献   

7.
Following uptake of chylomicron remnant retinyl esters by the macrophage cell line J774, the retinyl esters are hydrolyzed to retinol before retinol is further metabolized to retinal and the various retinoic acid isoforms. One hour after the addition of chylomicron remnant [3H]retinyl esters to the cells, the percentage of cell-associated radioactivity in the retinyl ester fraction had decreased from approximately 90% to approximately 40%, whereas the radioactivity in the retinol fraction increased correspondingly. After 4 hours of incubation, more than 79% of the radioactive retinyl esters had been hydrolyzed to retinol. When we measured incorporation of radioactivity in the protein fraction, we observed that the level of [3H]retinoylated proteins increased rapidly the first 4 hours, and then continued to increase at a lower rate up to 24 hours, when approximately 0.6% of the cell-associated radioactivity was covalently bound to protein. These data suggest that approximately 0.18% of all the cellular proteins might be retinoylated under such conditions. In summary, in the present study we have demonstrated that retinoids taken up by a macrophage cell line as chylomicron remnant retinyl esters, a physiologic plasma transport molecule for vitamin A, might be covalently linked to proteins. Such retinoylation might be relevant both for normal function, as well as for the toxic and teratogenic effects of vitamin A.  相似文献   

8.
P D Bishop  M D Griswold 《Biochemistry》1987,26(23):7511-7518
When cultured Sertoli cells derived from 20-day-old weanling rats were supplied [3H]retinol bound to serum retinol binding protein-transthyretin complex, [3H]retinol was rapidly incorporated and [3H]retinyl esters were synthesized. Within 28 h after administration, 83% of the labeled retinoids were accounted for as retinyl esters (64% as retinyl palmitate). Sertoli cells derived from vitamin A deficient rats and supplied [3H]retinol in culture under identical conditions likewise incorporated [3H]retinol and synthesized retinyl esters. In contrast to normal Sertoli cells, vitamin A deficient Sertoli cells eventually metabolized virtually all of the cellular [3H]retinol to retinyl esters. The primary metabolic fate of retinol administered to Sertoli cell cultures was the synthesis of retinyl esters under all conditions tested. However, administration of [3H]retinol bound to serum retinol binding protein gave metabolic profiles having a higher proportion of retinyl esters and lower proportions of unresolved polar material than administration of [3H]retinol alone. The kinetics of retinol uptake and intracellular retinyl ester synthesis in cultured Sertoli cells was complex. An initial, rapid phase of [3H]retinol incorporation lasting 30 min was followed by a slower rate of incorporation and a concomitant decrease in the intracellular concentration of [3H]retinol. During the time course the specific activity of [3H]retinyl palmitate eventually exceeded that of intracellular [3H]retinol. These observations suggest that two intracellular pools of retinol may exist in Sertoli cells.  相似文献   

9.
Retinoyl beta-glucuronide and retinyl beta-glucuronide, which are naturally occurring water-soluble metabolites of vitamin A, induce the granulocytic differentiation of HL-60 cells in vitro, as evidenced by an increased reduction of nitroblue tetrazolium. The relative effectiveness of various retinoids in differentiation is retinoic acid greater than retinoyl beta-glucuronide greater than retinyl beta-glucuronide. Under the selected assay conditions, retinol, hydroxyphenyl-retinamide, retinamide, and N-retinoyl-phenylalanine are essentially inactive in differentiation. At concentrations of retinoids from 10(-9) to 10(-5) M, cell viability was best with the retinoid beta-glucuronides and retinamide, less with retinoic acid and retinol, and poorest with the N-retinoyl aromatic amines. Cellular growth was depressed only slightly by retinyl beta-glucuronide and retinamide, but to a greater degree by the other derivatives. Retinoyl beta-glucuronide was hydrolyzed in part to retinoic acid, whereas retinyl beta-glucuronide was cleaved to retinol, if at all, at a very slow rate. Under the selected assay conditions, retinoic acid and the retinoid beta-glucuronides primarily induce the differentiation of HL-60 cells, whereas the N-retinoyl aromatic amines show cytotoxicity.  相似文献   

10.
Hepatocytes and hepatic stellate cells play important roles in retinoid storage and metabolism. Hepatocytes process postprandial retinyl esters and are responsible for secretion of retinol bound to retinol-binding protein (RBP) to maintain plasma retinol levels. Stellate cells are the body's major cellular storage sites for retinoid. We have characterized and utilized an immortalized rat stellate cell line, HSC-T6 cells, to facilitate study of the cellular aspects of hepatic retinoid processing. For comparison, we also carried out parallel studies in Hepa-1 hepatocytes. Like activated primary stellate cells, HSC-T6 express myogenic and neural crest cytoskeletal filaments. HSC-T6 cells take up and esterify retinol in a time- and concentration-dependent manner. Supplementation of HSC-T6 culture medium with free fatty acids (up to 300 micrometer) does not affect retinol uptake but does enhance retinol esterification up to 10-fold. RT-PCR analysis indicates that HSC-T6 cells express all 6 retinoid nuclear receptors (RARalpha, -beta, -gamma, and RXRalpha, -beta, -gamma) and like primary stellate cells, HSC-T6 stellate cells express cellular retinol-binding protein, type I (CRBP) but fail to express either retinol-binding protein (RBP) or transthyretin (TTR). Addition of retinol (10(-8)-10(-5) m) or all-trans-retinoic acid (10(-10)-10(-6) m) rapidly up-regulates CRBP expression. Using RAR-specific agonists and antagonists and an RXR-specific agonist, we show that members of the RAR-receptor family modulate HSC-T6 CRBP expression.Thus, HSC-T6 cells display the same retinoid-related phenotype as primary stellate cells in culture and will be a useful tool for study of hepatic retinoid storage and metabolism.  相似文献   

11.
Individual long-chain fatty acid esters of retinol can be resolved by high-performance liquid chromatography using an octyl- or phenyl-substituted reverse-phase column and mixtures of acetonitrile with water as mobile phase. This simple procedure provides good resolution of biologically important retinyl esters including retinyl palmitate and retinyl oleate. Using an isocratic elution system, it is shown that nine synthetic esters of retinol, ranging in fatty acyl chain length from 12 to 20 carbons, each elute with a unique elution volume and produce an absorbance signal at 340 nm proportional to molar concentration. The method is suitable for analysis of various esters of retinol in biological samples including lymph chylomicrons and blood plasma. The octyl-substituted reverse-phase column can also be used to separate more polar neutral retinoids including retinol and retinaldehyde.  相似文献   

12.
Conjugated linoleic acid (CLA) is a polyunsaturated fatty acid obtained from ruminant products. Previous studies in rats and pigs showed that a dietary equimolar mixture of c9,t11 and t10,c12 CLA isomers induces changes in serum and tissue levels of retinoids (vitamin A derivatives). However, the mechanism(s) responsible for these actions remain(s) unexplored. Given the numerous crucial biological functions regulated by retinoids, it is key to establish whether the perturbations in retinoid metabolism induced by dietary CLA mediate some of the beneficial effects associated with intake of this fatty acid or, rather, have adverse consequences on health. To address this important biological question, we began to explore the mechanisms through which dietary CLA alters retinoid metabolism. By using enriched preparations of CLA c9,t11 or CLA t10,c12, we uncoupled the effects of these two CLA isomers on retinoid metabolism. Specifically, we show that both isomers induce hepatic retinyl ester accumulation. However, only CLA t10,c12 enhances hepatic retinol secretion, resulting in increased serum levels of retinol and its specific carrier, retinol-binding protein (RBP). Dietary CLA t10,c12 also redistributes retinoids from the hepatic stores toward the adipose tissue and possibly stimulates hepatic retinoid oxidation. Using mice lacking RBP, we also demonstrate that this key protein in retinoid metabolism mediates hepatic retinol secretion and its redistribution toward fat tissue induced by CLA t10,c12 supplementation.  相似文献   

13.
Retinoids (vitamin A) are known to be involved in many key biological functions in mammals, such as embryonic development, reproduction or vision. Besides standard vitamin A forms, freshwater fish tissues contain high levels of didehydroretinoids or vitamin A2 forms. However, the tissue distribution, metabolism and function of both standard and particularly the didehydroretinoids are still poorly known in fish. In this study, we have quantified the levels of retinoids, including retinol, retinaldehyde, retinyl palmitate and their corresponding didehydro forms, as well as the levels of the active polar retinoids all-trans-, 9-cis- and 13-cis-retinoic acid in distinct tissues of juvenile rainbow trout. Our results indicate that the liver is clearly the main retinoid storage tissue in juvenile rainbow trout. Didehydroretinoids were dominant over retinoids in all analyzed tissues with the exception of plasma. Additionally, significant differences among tissues were observed between retinoids and didehydroretinoids, such as differences in the ester profiles and the proportions between free and esterified forms, suggesting that mechanisms that favor the utilization or storage of one of the other groups of compounds might exist in fish. Our data also show the presence of polar retinoids in different tissues of fish at the fmol/g scale. Overall, this study clearly demonstrates the presence of tissue-specific patterns of accumulation of both polar and nonpolar retinoids in fish tissues. The biological relevance of these findings should be the focus of future studies.  相似文献   

14.
Retinyl esters are a major endogenous storage source of vitamin A in vertebrates and their hydrolysis to retinol is a key step in the regulation of the supply of retinoids to all tissues. Some members of nonspecific carboxylesterase family (EC 3.1.1.1) have been shown to hydrolyze retinyl esters. However, the number of different isoenzymes that are expressed in the liver and their retinyl palmitate hydrolase activity is not known. Six different carboxylesterases were identified and purified from rat liver microsomal extracts. Each isoenzyme was identified by mass spectrometry of its tryptic peptides. In addition to previously characterized rat liver carboxylesterases ES10, ES4, ES3, the protein products for two cloned genes, AB010635 and D50580 (GenBank accession numbers), were also identified. The sixth isoenzyme was a novel carboxylesterase and its complete cDNA was cloned and sequenced (AY034877). Three isoenzymes, ES10, ES4 and ES3, account for more than 95% of rat liver microsomal carboxylesterase activity. They obey Michaelis-Menten kinetics for hydrolysis of retinyl palmitate with Km values of about 1 micro m and specific activities between 3 and 8 nmol.min-1.mg-1 protein. D50580 and AY034877 also hydrolyzed retinyl palmitate. Gene-specific oligonucleotide probing of multiple-tissue Northern blot indicates differential expression in various tissues. Multiple genes are highly expressed in liver and small intestine, important tissues for retinoid metabolism. The level of expression of any one of the six different carboxylesterase isoenzymes will regulate the metabolism of retinyl palmitate in specific rat cells and tissues.  相似文献   

15.
Vitamin A (retinol) is important for normal growth, vision and reproduction. It has a role in the immune response and the development of metabolic syndrome. Most of the retinol present in the body is stored as retinyl esters within lipid droplets in hepatic stellate cells (HSCs). In case of liver damage, HSCs release large amounts of stored retinol, which is partially converted to retinoic acid (RA). This surge of RA can mediate the immune response and enhance the regeneration of the liver. If the damage persists activated HSCs change into myofibroblast-like cells producing extracellular matrix, which increases the chance of tumorigenesis to occur. RA has been shown to decrease proliferation and metastasis of hepatocellular carcinoma. The levels of RA and RA signaling are influenced by the possibility to esterify retinol towards retinyl esters. This suggests a complex regulation between different retinoids, with an important regulatory role for HSCs.  相似文献   

16.
The physiologic role(s) of cellular retinol-binding protein (CRBP)-III, an intracellular retinol-binding protein that is expressed solely in heart, muscle, adipose, and mammary tissue, remains to be elucidated. To address this, we have generated and characterized CRBP-III-deficient (CRBP-III(-/-)) mice. Mice that lack CRBP-III were viable and healthy but displayed a marked impairment in retinoid incorporation into milk. Milk obtained from CRBP-III(-/-) dams contains significantly less retinyl ester, especially retinyl palmitate, than milk obtained from wild type dams. We demonstrated that retinol bound to CRBP-III is an excellent substrate for lecithin-retinol acyltransferase, the enzyme responsible for catalyzing retinyl ester formation from retinol. Our data indicated that the diminished milk retinyl ester levels arise from impaired utilization of retinol by lecithin-retinol acyltransferase in CRBP-III(-/-) mice. Interestingly, CRBP-I and CRBP-III each appeared to compensate for the absence of the other, specifically in mammary tissue, adipose tissue, muscle, and heart. For CRBP-III(-/-) mice, CRBP-I protein levels were markedly elevated in adipose tissue and mammary gland. In addition, in CRBP-I(-/-) mice, CRBP-III protein levels were elevated in tissues that normally express CRBP-III but were not elevated in other tissues that do not normally express CRBP-III. Our data suggested that CRBP-I and CRBP-III share some physiologic actions within tissues and that each can compensate for the absence of the other to help maintain normal retinoid homeostasis. However, under conditions of high demand for retinoid, such as those experienced during lactation, this compensation was incomplete.  相似文献   

17.
We investigated the effects of two natural dietary retinoid X receptor (RXR) ligands, phytanic acid (PA) and docosahexaenoic acid (DHA), on proliferation and on the metabolism of retinol (vitamin A) in both cultured normal human prostate epithelial cells (PrECs) and PC-3 prostate carcinoma cells. PA and DHA inhibited the proliferation of the parental PC-3 cells and PC-3 cells engineered to overexpress human lecithin:retinol acyltransferase (LRAT) in both the absence and presence of retinol. A synthetic RXR-specific ligand also inhibited PC-3 cell proliferation, whereas all-trans retinoic acid (ATRA) did not. PA and DHA treatment increased the levels of retinyl esters (REs) in both PrECs and PC-3 cells and generated novel REs that eluted on reverse-phase HPLC at 54.0 and 50.5 min, respectively. Mass spectrometric analyses demonstrated that these novel REs were retinyl phytanate (54.0 min) and retinyl docosahexaenoate (50.5 min). Neither PA nor DHA increased LRAT mRNA levels in these cells. In addition, we demonstrate that retinyl phytanate was generated by LRAT in the presence of PA and retinol; however, retinyl docosahexaenoate was produced by another enzyme in the presence of DHA and retinol.  相似文献   

18.
Retinoid metabolism in cultured human retinal pigment epithelium.   总被引:1,自引:0,他引:1       下载免费PDF全文
Uptake, esterification and release of all-trans-retinol in primary cultures of human retinal epithelium were studied. Cultured cells were supplemented with 3H-labelled 11,12-all-trans-retinol, using fatty-acid-free albumin as the carrier. This led to incorporation of retinal and the formation of all-trans- and 11-cis-retinyl palmitate. The metabolism of the all-trans ester was monitored in a medium containing various concentrations of foetal-bovine serum (FBS). In 20% (v/v) FBS, the ester was hydrolysed, and all-trans-retinol was released into the culture medium. In the absence of FBS, little ester was hydrolysed and no retinol was found in the medium. Dialysed or heat-inactivated FBS or fatty-acid-free albumin was as effective as FBS in provoking ester hydrolysis and retinol release. The concentration-dependency of this effect on FBS was matched by the corresponding concentrations of albumin alone. A linear relationship was also found between interphotoreceptor retinoid-binding protein and retinoid release. Haemoglobin, which does not bind retinoids, is ineffective in this capacity. It is concluded that lipid-binding substances, mainly albumin, in FBS act as acceptors for retinol and drain the cultured cells of this molecule. The release of the retinol is coupled to the hydrolysis of retinyl esters in the cell, so that there is little or no net hydrolysis of ester if there is no acceptor for retinol in the culture medium. This effect explains why cultured human retinal epithelial cells are depleted of their stores of retinoids when maintained in medium supplemented with FBS.  相似文献   

19.
Retinoids (vitamin A and its derivatives) play an essential role in many biological functions. However mammals are incapable of de novo synthesis of vitamin A and must acquire it from the diet. In the intestine, dietary retinoids are incorporated in chylomicrons as retinyl esters, along with other dietary lipids. The majority of dietary retinoid is cleared by and stored within the liver. To meet vitamin A requirements of tissues, the liver secretes retinol (vitamin A alcohol) into the circulation bound to its sole specific carrier protein, retinol-binding protein (RBP). The single known function of this protein is to transport retinol from the hepatic stores to target tissues. Over the last few years, the generation of knockout and transgenic mouse models has significantly contributed to our understanding of RBP function in the metabolism of vitamin A. We discuss below the role of RBP in maintaining normal vision and a steady flux of retinol throughout the body in times of need.  相似文献   

20.
Whereas retinoic acids control nuclear events, a second class of retinol metabolites, that is, the hydroxylated forms exemplified by 14-hydroxy-retro-retinol (HRR), operate primarily in the cytoplasm. They function as regulatory cofactors for cell survival/cell death decisions. In accordance with these biological aspects, we demonstrate that these retinoids bound protein kinase C (PKC) alpha with nanomolar affinity and markedly enhance the activation of PKC alpha and the entire downstream MAP kinase pathway by reactive oxygen species. HRR was 10 times more efficient than retinol, and the optimum doses are 10-7 and 10-6 M, respectively. PKC alpha activation was reversed rapidly by imposition of reducing conditions. The retinoid binding site was mapped to the first cysteine-rich region in the regulatory domain, C1A, yet was distinct from the binding sites of diacylglycerol and phorbol esters. The C1B domain bound retinoids poorly. The emerging theme is that retinoids serve as redox regulators of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号