首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrus bergamia Risso. is a rare perfumery plant. Taxonomists have different views on the taxonomy of C. bergamia. Chemical components of leaf and peel essential oils from C. bergamia, and its close relatives, C. limon, C. aurantifolia and three varieties of C. aurantium, were analyzed by GC and GC-MS. The analytical result shows that the chemical compositions of the leaf essential oils from C. bergamia are basically the same as those from three varieties of C. aurantium. Their main components are linalool (29.19-39.75% )and linalyl acetate (24.73-30.24% )etc., and contents of other components are also similar. But their peel essential oils are different. The peel essential oils from C. bergamia contain less limonene (29.94%) than those from C. aurantium (92.55-94.31% ) and less beta-pinene (3.00%) and y-terpinene(3.48% )than those from C. limon or C. aurantifolia (respectiyely 9.16% and 10.42% ) . The peel essential oils from C. bergamia contain not only as much linalool (22.20%) and linalyl acetate (32.66%)as those in the leaf essential oils from C. aurantium, but also as much limonene(29.94% )as that in the peel essential oils from C. limon or C. aurantifolia . The contents of limonene are close to those of the essential oils from C. aurantifolia. This result shows that C. bergamia may be a natural hybrid between C.aurantium and C. aurantifolia, as proposed by Sinclair W. B.  相似文献   

2.
In the present study we investigated the action of vitamins E and C on the inhibition of acetylcholinesterase and butyrylcholinesterase activities provoked by arginine in cerebral cortex and serum of 60-day-old rats. Animals were pretreated for 1 week with daily intraperitoneal administration of saline (control) or vitamins E (40 mg/kg) and C (100 mg/kg). Twelve hours after the last injection, animals received one injection of arginine (0.8 microM/g of body weight) or saline. Results showed that acetylcholinesterase and butyrylcholinesterase activities were decreased in the arginine-treated rats. Furthermore, pretreatment with vitamins E and C prevented these effects. The data indicate that the reduction of acetylcholinesterase and butyrylcholinesterase activities caused by arginine was probably mediated by oxidative stress. Assuming the possibility that these effects might also occur in the human condition, our findings may be relevant to explain, at least in part, the neurological dysfunction associated with hyperargininemia and might support a novel therapeutic strategy to slow the progression of neurodegeneration in this disorder.  相似文献   

3.
Despite the aberrant expression of cholinesterases in tumours, the question of their possible contribution to tumorigenesis remains unsolved. The identification in kidney of a cholinergic system has paved the way to functional studies, but details on renal cholinesterases are still lacking. To fill the gap and to determine whether cholinesterases are abnormally expressed in renal tumours, paired pieces of normal kidney and renal cell carcinomas (RCCs) were compared for cholinesterase activity and mRNA levels. In studies with papillary RCC (pRCC), conventional RCC, chromophobe RCC, and renal oncocytoma, acetylcholinesterase activity increased in pRCC (3.92 ± 3.01 mU·mg(-1), P = 0.031) and conventional RCC (2.64 ± 1.49 mU·mg(-1), P = 0.047) with respect to their controls (1.52 ± 0.92 and 1.57 ± 0.44 mU·mg(-1)). Butyrylcholinesterase activity increased in pRCC (5.12 ± 2.61 versus 2.73 ± 1.15 mU·mg(-1), P = 0.031). Glycosylphosphatidylinositol-linked acetylcholinesterase dimers and hydrophilic butyrylcholinesterase tetramers predominated in control and cancerous kidney. Acetylcholinesterase mRNAs with exons E1c and E1e, 3'-alternative T, H and R acetylcholinesterase mRNAs and butyrylcholinesterase mRNA were identified in kidney. The levels of acetylcholinesterase and butyrylcholinesterase mRNAs were nearly 1000-fold lower in human kidney than in colon. Whereas kidney and renal tumours showed comparable levels of acetylcholinesterase mRNA, the content of butyrylcholinesterase mRNA was increased 10-fold in pRCC. The presence of acetylcholinesterase and butyrylcholinesterase mRNAs in kidney supports their synthesis in the organ itself, and the prevalence of glycosylphosphatidylinositol-anchored acetylcholinesterase explains the splicing to acetylcholinesterase-H mRNA. The consequences of butyrylcholinesterase upregulation for pRCC growth are discussed.  相似文献   

4.
1. Skeletal muscle from C57BL dystrophic mice demonstrated decreased activities of acetylcholinesterase with increased activities of butyrylcholinesterase. These changes were less distinct when compared to those observed with 129 ReJ mice. 2. Collagenase or trypsin treatment solubilized less acetylcholinesterase activity but more butyrylcholinesterase activity from muscle of C57BL dystrophic mice than from muscle of control mice. 3. These treatments resulted in similar pattern of release of acetylcholinesterase activity from muscle of 129 ReJ mice, except that more acetylcholinesterase activity was released from dystrophic muscle (129 ReJ) than from control by pepsin treatment. 4. The acetylcholinesterase activities released by proteolytic enzymes were characterized by sucrose density gradient centrifugation.  相似文献   

5.
Cryptomeria japonica D. Don, called 'sugi' in Japanese, is an abundant and renewable potential resource of valuable natural products that may serve as natural biocides in Taiwan. Hydrodistillation (HD) and steam distillation (SD) were used for extracting the essential oils from C. japonica leaves in this study. The chemical constituents of the two leaf essential oils were identified by GC/MS analysis, and their antitermitic activities were evaluated. The results from the antitermitic tests against Coptotermes formosanus Shiraki showed that the leaf essential oils extracted by HD and SD had excellent antitermitic activities, with LD(50) values of 1.57 and 1.72 mg/g after 7 d of testing, respectively. Comparison of the chemical composition of the two leaf essential oils revealed that oxygenated diterpenes (kaur-16-ene) and oxygenated sesquiterpenes (β-elemol) were the dominant constituents. In addition, 13 constituents isolated from the C. japonica leaf essential oils were tested individually against C. formosanus. Among these constituents, β-elemol and α-terpineol achieved 100% termite mortality at the dosage of 1 mg/g after 7 d of testing. These results demonstrated that both C. japonica leaf essential oils as well as β-elemol and α-terpineol possessed commendable antitermitic activity.  相似文献   

6.
In this study, the anti-termitic activities of 11 essential oils from three species of coniferous tree against Coptotermes formosanus Shiraki were investigated using direct contact application. Results demonstrated that at the dosage of 10 mg/g, the heartwood and sapwood essential oils of Calocedrus macrolepis var. formosana and Cryptomeria japonica and the leaf essential oil of Chamaecyparis obtusa var. formosana had 100% mortality after 5 d of test. Among the tested essential oils, the heartwood essential oil of C. macrolepis var. formosana killed all termites after 1 d of test, with an LC(50) value of 2.6 mg/g, exhibiting the strongest termiticidal property. The termiticidal effect of heartwood essential oil was due to its toxicity and its repellent action.  相似文献   

7.
The bioactivity of 14 essential oils from five plants has been studied using the brine shrimp lethality test and the Aedes aegypti larvicidal assay. All essential oils screened had LC50 values smaller than 200 microg/ml, showing significant lethality against brine shrimp. In addition, nine of the 14 essential oils tested showed toxicity against the fourth-instar A. aegypti larvae in 24 h (LC50<100 microg/ml). Of these, the leaf and bark essential oils of Cryptomeria japonica demonstrated high larvicidal activity, the most active being the leaf essential oil of C. japonica, with a LC50=37.6 microg/ml (LC90=71.9 microg/ml), followed by the bark essential oil of C. japonica also showing high activity against A. aegypti larvae, with a LC50=48.1 microg/ml (LC90=130.3 microg/ml). The results obtained from this study suggest that the leaf and bark essential oils of C. japonica are promising as larvicides against A. aegypti larvae and could be useful in the search for new natural larvicidal compounds.  相似文献   

8.
In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC–MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml−1 and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.  相似文献   

9.
The larvicidal activities of leaf essential oils and their constituents from six chemotypes of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) trees were evaluated against three mosquito species. Results of larvicidal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against Aedes albopictus larvae, and their LC(50) values in 24h were 40.8 microg/ml (LC(90)=81.7 microg/ml) and 46.5 microg/ml (LC(90)=83.3 microg/ml), respectively. Results of the 24-h mosquito larvicidal assays also showed that the effective constituents in leaf essential oils were trans-cinnamaldehyde and benzaldehyde and that the LC(50) values of these constituents against A. albopictus larvae were below 50 mug/ml. In addition, cinnamaldehyde type leaf essential oil and trans-cinnamaldehyde have also exhibited great larvicidal performance against Culex quinquefasciatus and Armigeres subalbatus larvae. Comparisons of mosquito larvicidal activity of trans-cinnamaldehyde congeners revealed that alpha-methyl cinnamaldehyde, benzaldehyde, and trans-cinnamaldehyde exhibited strong mosquito larvicidal activity.  相似文献   

10.
The antifungal activities of cinnamon oil, clove oil, anise oil, and peppermint oil, and their main components (cinnamaldehyde, eugenol, trans-anethole, and menthol, respectively) against molds identified from areca palm leaf sheath (Mucor dimorphosporus, Penicillium sp., Aspergillus niger, and Rhizopus sp.) were investigated. An agar dilution method was employed to determine the minimum inhibitory concentration (MIC) of essential oils and their main components. Zone inhibition tests and the inhibitory effect of the leaf sheath dip-treated with essential oils against those molds were examined. Major components of essential oils on the leaf sheath during storage were quantified by gas chromatography analysis. The MIC values of essential oils on agar and on the leaf sheath were identical. With an MIC of 50 ??g ml−1, cinnamon oil had the strongest inhibitory effect. At their MICs the oils were capable of providing protection against mold growth on the leaf sheath for at least 12 weeks during storage at 25 °C and 100% RH. Scanning electron microscope examination showed that essential oils prevented spore germination. Except for menthol in peppermint oil, the main components of the essential oils, which were fairly stable over the storage period, largely contributed to the antifungal activity.  相似文献   

11.
The paper is a review of literature data on interaction of erythrocytic acetylcholinesterase and of mammalian blood serum butyrylcholinesterase with a group of isomeric complex ester derivatives (acetates, propionates, butyrates, valerates, and isobutyrates) of bases and iodomethylates of ephedrine and its enantiomer pseudoephedrine. For 20 alkaloid monoesters, parameters of enzymatic hydrolysis are determined and their certain specificity toward acetylcholinesterase is revealed, whereas 5 diesters of iodomethylates of pseudoephedrine were submitted to hydrolysis only by butyrylcholinesterase. It turned out that 20 alkaloid diesters and 10 trimethylammonium derivatives were uncompetitive reversible inhibitors of acetylcholinesterase and competitive inhibitors of butyrylcholinesterase. The performed for the first time isomer and enantiomer analysis “structure—efficiency” has shown that in most caes it is possible to state the greater complementarity of catalytical surface of enzymes for ligands of pseudoephedrine structure, such differentiation being more often manifested.  相似文献   

12.
Cinnamomum species have applications in the pharmaceutical and fragrance industry for wide biological and pharmaceutical activities. The present study investigates the chemical composition of the essential oils extracted from two species of Cinnamomum namely C. tamala and C. camphora. Chemical analysis showed E-cinnamyl acetate (56.14 %), E-cinnamaldehyde (20.15 %), and linalool (11.77 %) contributed as the major compounds of the 95.22 % of C. tamala leaves essential oil found rich in phenylpropanoids (76.96 %). C. camphora essential oil accounting for 93.57 % of the total oil composition was rich in 1,8-cineole (55.84 %), sabinene (14.37 %), and α-terpineol (10.49 %) making the oil abundant in oxygenated monoterpenes (70.63 %). Furthermore, the acetylcholinesterase inhibitory activity for both the essential oils was carried out using Ellman's colorimetric method. The acetylcholinesterase inhibitory potential at highest studied concentration of 1 mg/mL was observed to be 46.12±1.52 % for C. tamala and 53.61±2.66 % for C. camphora compared to the standard drug physostigmine (97.53±0.63 %) at 100 ng/ml. These multiple natural aromatic and fragrant characteristics with distinct chemical compositions offered by Cinnamon species provide varied benefits in the development of formulations that could be advantageous for the flavor and fragrance industry.  相似文献   

13.
Cholinesterases (acetylcholinesterase and butyrylcholinesterase) have been shown to exhibit not only esterase activity but also an amine sensitive aryl acylamidase and a metallo-carboxypeptidase activities. There is also evidence to indicate that they have functions in the substantia nigra of brain, in neural cell differentiation, cell division and tumorigenesis, cell-adhesion and detoxication mechanisms. Butyrylcholinesterase is suggested to act as a back-up enzyme in acetylcholinesterase knock-out mice. Cholinesterases have catalytic or non-catalytic roles in these functions. Partial sequence homology to many other proteins having different functions and a metal binding site which can influence functions are probably factors that confer the non-cholinergic functions and activities on cholinesterases.  相似文献   

14.
Juniperus communis leaf oil, J. chinensis wood oil, and Cupressus funebris wood oil (Cupressaceae) from China were analyzed by gas chromatography and gas chromatography-mass spectrometry. We identified 104 compounds, representing 66.8-95.5% of the oils. The major components were: α-pinene (27.0%), α-terpinene (14.0%), and linalool (10.9%) for J. communis; cuparene (11.3%) and δ-cadinene (7.8%) for J. chinensis; and α-cedrene (16.9%), cedrol (7.6%), and β-cedrene (5.7%) for C. funebris. The essential oils of C. funebris, J. chinensis, and J. communis were evaluated for repellency against adult yellow fever mosquitoes, Aedes aegypti (L.), host-seeking nymphs of the lone star tick, Amblyomma americanum (L.), and the blacklegged tick, Ixodes scapularis Say, and for toxicity against Ae. aegypti larvae and adults, all in laboratory bioassays. All the oils were repellent to both species of ticks. The EC(95) values of C. funebris, J. communis, and J. chinensis against A. americanum were 0.426, 0.508, and 0.917 mg oil/cm(2) filter paper, respectively, compared to 0.683 mg deet/cm(2) filter paper. All I. scapularis nymphs were repelled by 0.103 mg oil/cm(2) filter paper of C. funebris oil. At 4 h after application, 0.827 mg oil/cm(2) filter paper, C. funebris and J. chinensis oils repelled ≥80% of A. americanum nymphs. The oils of C. funebris and J. chinensis did not prevent female Ae. aegypti from biting at the highest dosage tested (1.500 mg/cm(2) ). However, the oil of J. communis had a Minimum Effective Dosage (estimate of ED(99) ) for repellency of 0.029 ± 0.018 mg/cm(2) ; this oil was nearly as potent as deet. The oil of J. chinensis showed a mild ability to kill Ae. aegypti larvae, at 80 and 100% at 125 and 250 ppm, respectively.  相似文献   

15.
The essential oils isolated from nine geographical provenances of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) leaves were examined by GC-MS and their chemical constituents were compared. According to GC-MS and cluster analyses the leaf essential oils of the nine provenances and their relative contents were classified into six chemotypes-cinnamaldehyde type, cinnamaldehyde/cinnamyl acetate type, cinnamyl acetate type, linalool type, camphor type and mixed type. In addition, the antifungal activities of leaf essential oils and their constituents from six chemotypes of indigenous cinnamon were investigated in this study. Results from the antifungal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against white-rot fungi, Trametes versicolor and Lenzites betulina and brown-rot fungus Laetiporus sulphureus. The antifungal indices of leaf essential oils from these two chemotypes at the level of 200 micro/ml against T. versicolor, L. betulina and L. sulphureus were all 100%. Among them, the IC(50) (50% of inhibitory concentrations) value of the essential oil of cinnamaldehyde type leaf against L. sulphureus was 52-59microg/ml. Cinnamaldehyde possessed the strongest antifungal activities in comparison with other constituents of the essential oils from cinnamaldehyde type leaf, at the level of 100microg/ml its antifungal indices against T. versicolor, L. betulina and L. sulphureus were 100%. The IC50 values of cinnamaldehyde against T. versicolor, L. betulina and L. sulphureus were 73, 74 and 73microg/ml, respectively.  相似文献   

16.
While acetylcholinesterase (EC 3.1.1.7) has a clearly defined role in neurotransmission, the functions of its sister enzyme butyrylcholinesterase (EC 3.1.1.8) are more obscure. Numerous mutations, many inactivating, are observed in the human butyrylcholinesterase gene, and the butyrylcholinesterase knockout mouse has an essentially normal phenotype, suggesting that the enzyme may be redundant. Yet the gene has survived for many millions of years since the duplication of an ancestral acetylcholinesterase early in vertebrate evolution. In this paper, we ask the questions: why has butyrylcholinesterase been retained, and why are inactivating mutations apparently tolerated? Butyrylcholinesterase has diverged both structurally and in terms of tissue and cellular expression patterns from acetylcholinesterase. Butyrylcholinesterase-like activity and enzymes have arisen a number of times in the animal kingdom, suggesting the usefulness of such enzymes. Analysis of the published literature suggests that butyrylcholinesterase has specific roles in detoxification as well as in neurotransmission, both in the brain, where it appears to control certain areas and functions, and in the neuromuscular junction, where its function appears to complement that of acetylcholinesterase. An analysis of the mutations in human butyrylcholinesterase and their relation to the enzyme’s structure is shown. In conclusion, it appears that the structure of butyrylcholinesterase’s catalytic apparatus is a compromise between the apparently conflicting selective demands of a more generalised detoxifier and the necessity for maintaining high catalytic efficiency. It is also possible that the tolerance of mutation in human butyrylcholinesterase is a consequence of the detoxification function. Butyrylcholinesterase appears to be a good example of a gene that has survived by subfunctionalisation.  相似文献   

17.
Medium‐chain fatty acids (MCFA, C6‐14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl‐CoA‐dependent pathway for the synthesis of MFCA‐rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.  相似文献   

18.
The interaction of dialkyl (alpha-carbometoxy-beta,beta,beta-trifluoroethyl) phosphates (RO)2P(O) . OCH(CF3)COOMe (R = Me, Et, Pr, Pri, Bu, Bui, Am, Hex) (I-VIII) with human erythrocyte acetylcholinesterase, horse serum butyrylcholinesterase, pig liver carboxylesterase was studied and acute toxicity in mice was estimated. Compounds (I)-(VIII) were not hydrolyzed by carboxylesterase, slowly and irreversibly inhibited acetylcholinesterase (kII = 10(2)-10(4) M-1 X min-1) and more efficiently inhibited butyrylcholinesterase and carboxylesterase (kII = 10(3)-10(7) M-1 X min-1). The structure--antienzymatic activity relationships were investigated. With increasing of hydrophobicity of alkoxy groups, antienzymatic activity to butyrylcholinesterase and carboxylesterase ("sites of loss") rises equally and more significantly, than antiacetylcholinesterase activity (delta lg kII 1.0 and 2.4 for R = CH3 and C5H11 resp.). Branching at the alpha-position of alkoxy groups leads to sharp reducing of acetylcholinesterase and butyrylcholinesterase inhibition constants, the carboxylesterase inhibition mechanism becoming reversible. Multiple regression analysis (the Kubinyi model) showed that influence of steric hindrances is revealed at the phosphorylation stage. It was found that phosphates (I)-(VIII) possess low acute toxicity in mice (900-2000 mg/kg). The toxicity of this homologous series appears to be independent of the hydrophobicity. Role of esterases in toxicological effect of compounds (I)-(VIII) is discussed.  相似文献   

19.
Five tacrine–ferulic acid hybrids (6a–e) were designed and synthesized as multi-potent anti-Alzheimer drug candidates. All target compounds have better acetylcholinesterase inhibitory activity and comparable butyrylcholinesterase inhibitory activity in relation to tacrine. Interestingly, 6d showed a reversible and non-competitive inhibitory action for acetylcholinesterase indicating interaction with the peripheral anionic site, whereas a reversible but competitive inhibitory action for butyrylcholinesterase. The antioxidant study revealed that four target compounds have, compared to Trolox, high ability to absorb reactive oxygen species.  相似文献   

20.
Conyza sumatrensis (Retz.) E.Walker (Asteraceae) is a spontaneous annual herb, fairly widespread throughout Tunisia, which has rarely been studied or valued in any sector. Essential oils were obtained by hydrodistillation of different parts (flower heads, leaves, stems, and roots) of C. sumatrensis plants, which were collected in autumn (November 2007) at the flowering stage in the area of Monastir, Tunisia. In total, 98 compounds, representing 88.1–99.3% of the oil composition, were identified by GC‐FID and GC/MS analyses. The root essential oil was distinguished by its high content in acetylenes (matricaria ester, 4 ; 74.3%), while those from flower heads and leaves were dominated by oxygenated sesquiterpenes (61.1 and 50.3%, resp.). The oils of C. sumatrensis from Tunisia belonged to a matricaria ester/caryophyllene oxide chemotype. All the oils were evaluated for antibacterial, antifungal, and allelopathic activities. The results indicate that the leaf oil exhibited significant in vitro antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, and Proteus mirabilis and that the C. sumatrensis oils isolated from the aerial parts presented high mycelia‐growth inhibition of Candida albicans and the filamentous fungi tested. Moreover, the essential oils of the different plant parts inhibited the shoot and root growth of Raphanus sativus (radish) seedlings. Indeed, the inhibition of the hypocotyl growth varied from 28.6 to 90.1% and that of the radicle from 42.3 to 96.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号