首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for assaying L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) which permits rate measurements with L-3-hydroxyacyl-CoA substrates of various chain lengths at physiological pH is described. The method is based on a coupled assay system in which 3-ketoacyl-CoA compounds formed by the dehydrogenase are cleaved by 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in the presence of CoASH. The advantages of this assay method are its irreversibility and elimination of product inhibition. The assay procedure was used to determine the kinetic parameters (Km, Vmax) of pig heart L-3-hydroxyacyl-CoA dehydrogenase with several substrates of various chain lengths. The data obtained show the enzyme to be most active with medium-chain substrates whereas Km values for medium-chain and long-chain substrates are almost equal but much lower than those previously reported.  相似文献   

2.
We have purified to homogeneity the long-chain specific 3-hydroxyacyl-CoA dehydrogenase from mitochondrial membranes of human infant liver. The enzyme is composed of non-identical subunits of 71 kDa and 47 kDa within a native structure of 230 kDa. The pure enzyme is active with 3-ketohexanoyl-CoA and gives maximum activity with 3-ketoacyl-CoA substrates of C10 to C16 acyl-chain length but is inactive with acetoacetyl-CoA. In addition to 3-hydroxyacyl-CoA dehydrogenase activity, the enzyme possesses 2-enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase activities which cannot be separated from the dehydrogenase. None of these enzymes show activity with C4 substrates but all are active with C6 and longer acyl-chain length substrates. They are thus distinct from any described previously. This human liver mitochondrial membrane-bound enzyme catalyses the conversion of medium- and long-chain 2-enoyl-CoA compounds to: 1) 3-ketoacyl-CoA in the presence of NAD alone and 2) to acetyl-CoA (plus the corresponding acyl-CoA derivatives) in the presence of NAD and CoASH. It is therefore a multifunctional enzyme, resembling the beta-oxidation enzyme of E. coli, but unique in its membrane location and substrate specificity. We propose that its existence explains the repeated failure to detect any intermediates of mitochondrial beta-oxidation.  相似文献   

3.
Lu J  Zhu Y  Li Y  Lu W  Hu L  Niu B  Qing P  Gu L 《Protein and peptide letters》2010,17(12):1536-1541
Information about interactions between enzymes and small molecules is important for understanding various metabolic bioprocesses. In this article we applied a majority voting system to predict the interactions between enzymes and small molecules in the metabolic pathways, by combining several classifiers including AdaBoost, Bagging and KNN together. The advantage of such a strategy is based on the principle that a predictor based majority voting systems usually provide more reliable results than any single classifier. The prediction accuracies thus obtained on a training dataset and an independent testing dataset were 82.8% and 84.8%, respectively. The prediction accuracy for the networking couples in the independent testing dataset was 75.5%, which is about 4% higher than that reported in a previous study. The web-server for the prediction method presented in this paper is available at http://chemdata.shu.edu.cn/small-enz.  相似文献   

4.
5.
Cell robustness and complexity have been recognized as unique features of biological systems. Such robustness and complexity of metabolic-reaction systems can be explored by discovering, or identifying, the multiple flux distributions (MFD) and redundant pathways that lead to a given external state; however, this is exceedingly cumbersome to accomplish. It is, therefore, highly desirable to establish an effective computational method for their identification, which, in turn, gives rise to a novel insight into the cellular function. An effective approach is proposed for complementarily identifying MFD in metabolic flux analysis and multiple metabolic pathways (MMP) in structural pathway analysis. This approach judiciously integrates flux balance analysis (FBA) based on linear programming and the graph-theoretic method for determining reaction pathways. A single metabolic pathway, with the concomitant flux distribution and the overall reaction manifesting itself as the desired phenotype under some environmental conditions, is determined by FBA from the initial candidate sequence of metabolic reactions. Subsequently, the graph-theoretic method recovers all feasible MMP and the corresponding MFD. The approach's efficacy is demonstrated by applying it to the in silico Escherichia coli model under various culture conditions. The resultant MMP and MFD attaining a unique external state reveal the surprising adaptability and robustness of the intricate cellular network as a key to cell survival against environmental or genetic changes. These results indicate that the proposed approach would be useful in facilitating drug discovery.  相似文献   

6.
The identities of receptor protein tyrosine phosphatases (PTPs) that associate with Trk protein tyrosine kinase (PTK) receptors and modulate neurotrophic signaling are unknown. The leukocyte common antigen-related (LAR) receptor PTP is present in neurons expressing TrkB, and like TrkB is associated with caveolae and regulates survival and neurite outgrowth. We tested the hypothesis that LAR associates with TrkB and regulates neurotrophic signaling in embryonic hippocampal neurons. Coimmunoprecipitation and coimmunostaining demonstrated LAR interaction with TrkB that is increased by BDNF exposure. BDNF neurotrophic activity was reduced in LAR-/- and LAR siRNA-treated LAR+/+ neurons and was augmented in LAR-transfected neurons. In LAR-/- neurons, BDNF-induced activation of TrkB, Shc, AKT, ERK, and CREB was significantly decreased; while in LAR-transfected neurons, BDNF-induced CREB activation was augmented. Similarly, LAR+/+ neurons treated with LAR siRNA demonstrated decreased activation of Trk and AKT. LAR is known to activate the Src PTK by dephosphorylation of its negative regulatory domain and Src transactivates Trk. In LAR-/- neurons, or neurons treated with LAR siRNA, phosphorylation of the Src regulatory domain was increased (indicating Src inactivation), consistent with a role for Src in mediating LAR's ability to up-regulate neurotrophic signaling. Interactions between LAR, TrkB, and Src were further confirmed by the findings that Src coimmunoprecipitated with LAR, that the Src inhibitor PP2 blocked the ability of LAR to augment TrkB signaling, and that siRNA-induced depletion of Src decreased LAR interaction with TrkB. These studies demonstrate that receptor PTPs can associate with Trk complexes and promote neurotrophic signaling and point to receptor PTP-based strategies as a novel approach for modulating neurotrophin function.  相似文献   

7.
Recent advances in functional genomics afford the opportunity to interrogate the expression profiles of thousands of genes simultaneously and examine the function of these genes in a high-throughput manner. In this study, we describe a rational and efficient approach to identifying novel regulators of insulin secretion by the pancreatic beta-cell. Computational analysis of expression profiles of several mouse and cellular models of impaired insulin secretion identified 373 candidate genes involved in regulation of insulin secretion. Using RNA interference, we assessed the requirements of 10 of these candidates and identified four genes (40%) as being essential for normal insulin secretion. Among the genes identified was Hadhsc, which encodes short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD), an enzyme of mitochondrial beta-oxidation of fatty acids whose mutation results in congenital hyperinsulinism. RNA interference-mediated gene suppression of Hadhsc in insulinoma cells and primary rodent islets revealed enhanced basal but normal glucose-stimulated insulin secretion. This increase in basal insulin secretion was not attenuated by the opening of the KATP channel with diazoxide, suggesting that SCHAD regulates insulin secretion through a KATP channel-independent mechanism. Our results suggest a molecular explanation for the hyperinsulinemia hypoglycemic seen in patients with SCHAD deficiency.  相似文献   

8.
Rab3A is a small, Ras-like GTPase expressed in neuroendocrine cells, in which it is associated with secretory vesicle membranes and regulates exocytosis. Using the yeast two-hybrid system, we have identified a rat brain cDNA encoding a novel 50-kDa protein, which we have named Rabin3, that interacts with Rab3A and Rab3D but not with other small GTPases (Rab3C, Rab2, Ran, or Ras). Several independent point mutations in the effector domain of Rab3A (F51L, V55E, and G56D) which do not alter nucleotide binding by the GTPase abolish the interaction with Rabin3, while another mutation (V52A) appears to increase the interaction. These results demonstrate that the interaction is highly specific. However, a glutathione S-transferase-Rabin3 fusion protein associates only weakly in vitro with recombinant Rab3A and possesses no detectable GTPase-activating protein or nucleotide exchange activity, and Rabin3 overexpressed in adrenal chromaffin cells has no observable effect on secretion. The protein possess a sequence characteristic of coiled-coil domains and a second small region with sequence similarity to a Saccharomyces cerevisiae protein, Sec2p, Sec2p is essential for constitutive secretion in yeast cells and interacts with Sec4p, a close relative of the Rab3A GTPase. Rabin3 mRNA and protein are widely expressed but are particularly abundant in testes.  相似文献   

9.
The in vitro interaction between the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and cytoskeletal elements is well documented. To verify this association within cells, the intracellular distribution of GAPDH under various metabolic conditions has been investigated in immunostained cells or cells expressing GAPDH as a GFP fusion protein. GAPDH was homogeneously distributed in the cytoplasm and no interaction of GAPDH with cytoskeletal elements, neither with microfilaments nor microtubules or intermediate filaments, was detectable. In living cells expressing GFP-GAPDH, stress fibres were excluded from the fluorescence. In contrast to proliferating cells, the cytoplasmic GAPDH of serum-depleted cells was not homogeneously distributed, but colocalised with stress fibres. The mechanism for stimulating this actin-binding affinity was independent of the NO-signalling pathway. The results support the idea of a specialised function for the interaction of GAPDH and cytoskeletal elements, rather than a general function, as e.g. microcompartmentalization of glycolytic enzymes.  相似文献   

10.
Bloom’s syndrome (BS) is an autosomal recessive disorder characterized by growth retardation, cancer predisposition, and sterility. BS mutated (Blm), the gene mutated in BS patients, is one of five mammalian RecQ helicases. Although BLM has been shown to promote genome stability by assisting in the repair of DNA structures that arise during homologous recombination in somatic cells, less is known about its role in meiotic recombination primarily because of the embryonic lethality associated with Blm deletion. However, the localization of BLM protein on meiotic chromosomes together with evidence from yeast and other organisms implicates a role for BLM helicase in meiotic recombination events, prompting us to explore the meiotic phenotype of mice bearing a conditional mutant allele of Blm. In this study, we show that BLM deficiency does not affect entry into prophase I but causes severe defects in meiotic progression. This is exemplified by improper pairing and synapsis of homologous chromosomes and altered processing of recombination intermediates, resulting in increased chiasmata. Our data provide the first analysis of BLM function in mammalian meiosis and strongly argue that BLM is involved in proper pairing, synapsis, and segregation of homologous chromosomes; however, it is dispensable for the accumulation of recombination intermediates.  相似文献   

11.
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)-1 and -2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin alpha6beta4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.  相似文献   

12.
13.
14.
NF-Y is a CCAAT-binding trimer with two histonic subunits, NF-YB and NF-YC, resembling H2A-H2B. We previously showed that the short conserved domains of NF-Y efficiently bind to the major histocompatibility complex class II Ea Y box in DNA nucleosomized with purified chicken histones. Using wild-type NF-Y and recombinant histones, we find that NF-Y associates with H3-H4 early during nucleosome assembly, under conditions in which binding to naked DNA is not observed. In such assays, the NF-YB-NF-YC dimer forms complexes with H3-H4, for whose formation the CCAAT box is not required. We investigated whether they represent octamer-like structures, using DNase I, micrococcal nuclease, and exonuclease III, and found a highly positioned nucleosome on Ea, whose boundaries were mapped; addition of NF-YB-NF-YC does not lead to the formation of octameric structures, but changes in the digestion patterns are observed. NF-YA can bind to such preformed DNA complexes in a CCAAT-dependent way. In the absence of DNA, NF-YB-NF-YC subunits bind to H3-H4, but not to H2A-H2B, through the NF-YB histone fold. These results indicate that (i) the NF-Y histone fold dimer can efficiently associate DNA during nucleosome formation; (ii) it has an intrinsic affinity for H3-H4 but does not form octamers; and (iii) the interactions between NF-YA, NF-YB-NF-YC, and H3-H4 or nucleosomes are not mutually exclusive. Thus, NF-Y can intervene at different steps during nucleosome formation, and this scenario might be paradigmatic for other histone fold proteins involved in gene regulation.  相似文献   

15.
16.
  • 1.1. Using electrical analogs, we have presented a systematic procedure for calculating the flux control coefficients of linear metabolic pathways with multiple feedback loops.
  • 2.2. In this method, an electrical analog circuit is constructed first for the unregulated pathway.
  • 3.3. This circuit is subsequently modified in a step-by-step fashion to take into account the effect of each feedback loop in the pathway.
  • 4.4. An analog circuit consists of resistances which are connected in series (or parallel) with a voltage (or current) source.
  • 5.5. The flux control coefficients of the enzymes are represented by voltages across (or currents through) the resistances and are determined by an application of Ohm's law.
  • 6.6. We have investigated the possible patterns in linear pathways with two feedback loops.
  • 7.7. This is followed by an analysis of a linear pathway with an arbitrary pattern of feedback inhibition.
  相似文献   

17.
Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, are produced when colonic bacteria in the human gastrointestinal tract ferment undigested fibers. Free fatty acid receptor 2 (FFA2) and FFA3 are G-protein-coupled receptors recently identified as SCFA receptors that may modulate inflammation. We previously showed through in vitro experiments that SCFAs activate FFA2 and FFA3, thereby mitigating inflammation in human renal cortical epithelial cells. This study used a murine model of adenine-induced renal failure to investigate whether or not SCFAs can prevent the progression of renal damage. We also examined whether or not these FFA2 and FFA3 proteins have some roles in this protective mechanism in vivo. Immunohistochemical analyses of mouse kidneys showed that FFA2 and FFA3 proteins were expressed mainly in the distal renal tubules and collecting tubules. First, we observed that the administration of propionate mitigated the renal dysfunction and pathological deterioration caused by adenine. Consistent with this, the expression of inflammatory cytokines and fibrosis-related genes was reduced. Furthermore, the mitigation of adenine-induced renal damage by the administration of propionate was significantly attenuated in FFA2−/− and FFA3−/− mice. Therefore, the administration of propionate significantly protects against adenine-induced renal failure, at least in part, via the FFA2 and FFA3 pathways. Our data suggest that FFA2 and FFA3 are potential new therapeutic targets for preventing or delaying the progression of chronic kidney disease.  相似文献   

18.
Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1–dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3–BLOC-1 super-complex.  相似文献   

19.
IMP dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. Here we show that both IMPDH type 1 (IMPDH1) and IMPDH type 2 are associated with polyribosomes, suggesting that these housekeeping proteins have an unanticipated role in translation regulation. This interaction is mediated by the subdomain, a region of disputed function that is the site of mutations that cause retinal degeneration. The retinal isoforms of IMPDH1 also associate with polyribosomes. The most common disease-causing mutation, D226N, disrupts the polyribosome association of at least one retinal IMPDH1 isoform. Finally, we find that IMPDH1 is associated with polyribosomes containing rhodopsin mRNA. Because any perturbation of rhodopsin expression can trigger apoptosis in photoreceptor cells, these observations suggest a likely pathological mechanism for IMPDH1-mediated hereditary blindness. We propose that IMPDH coordinates the translation of a set of mRNAs, perhaps by modulating localization or degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号