首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Astrocytes play a key role in the central nervous system. However, methods of visualizing astrocytes in the deep brain in vivo have been lacking. 3‐photon fluorescence imaging of astrocytes labeled by sulforhodamine 101 (SR101) is demonstrated in deep mouse brain in vivo. Excitation wavelength selection was guided by wavelength‐dependent 3‐photon action cross section (ησ 3) measurement of SR101. 3‐photon fluorescence imaging of the SR101‐labeled vasculature enabled an imaging depth of 1340‐μm into the mouse brain. This justifies the deep imaging capability of the technique and indicates that the imaging depth is not determined by the signal‐to‐background ratio limit encountered in 2‐photon fluorescence imaging. Visualization of astrocytes 910 μm below the surface of the mouse brain in vivo is demonstrated, 30% deeper than that using 2‐photon fluorescence microscopy. Through quantitative comparison of the signal difference between the SR101‐labeled blood vessels and astrocytes, the challenges of visualizing astrocytes below the white matter is further elucidated.   相似文献   

3.
4.
Brain sectioning has been improved through gelatin embedding so that more than forty precisely oriented serial sections can be obtained from a single brain. Since the embedding gelatin requires no fixation, it can be removed from the sections prior to staining by simple warming. The reduction of Berlin blue dye commonly observed after staining by the Mulligan method has been found to be at least partly due to light in the UV to near UV range. Dye reduction is significantly inhibited by postfixation in 25% acetic acid.  相似文献   

5.
Weakly basic fluorescent dyes are used to visualize organelles within live cells due to their affinity to acidic subcellular organelles. In particular, they are used to stain the silica deposited in the silica deposition vesicles (SDVs) of diatoms during the course of their frustule synthesis. This study involved the synthesis of fluorescent dyes derived from oligopropylamines, compounds similar to those found in diatoms. The dyes were obtained by reacting oligopropylamines with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. The reaction was realized using methylated oligopropylamines with two or three nitrogen atoms and yielded two novel fluorescent dyes: NBD-N2 and NBD-N3. The dyes appeared to be highly efficient in the in vivo staining of growing siliceous frustules of diatoms at concentrations at least 10 times lower than those required for staining with HCK-123. NBD-N3 also efficiently stained other subcellular vesicles of eukaryotic unicellular algae. NBD-N2 stained only growing diatom frustules, whereas NBD-N3 also stained various subcellular organelles of different eukaryotic unicellular algae. NBD-N2 and NBD-N3 were not removed from stained diatom frustules by drastic treatments with H2SO4 and H2O2. Fluorescent silica can also be obtained by its chemical precipitation in the presence of NBD-N2 and NBD-N3.  相似文献   

6.
7.
We investigated the fate of intraperitoneally and intravenously injected reverse phase evaporation vesicles of fairly uniform size (100–200 m) with respect to blood celarance, tissue distribution and integrity in vivo. The vesicles are composed of sphingomyelin and cholesterol in a molar ratio 3 : 2 and contain 125I-labeled poly(vinyl pyrrolidone) in the aqueous compartment. It is shown that following an intrapersoneal injection the vesicles are transported intact, and not associated with cells, from the peritoneal activity to the blood and are subsequently taken up mainly by liver and spleen, where, particularly in liver, the phospholipid is partially metabolized. After an intraperitoneal injection the rate of vesicle-uptake by liver and spleen is reduced by a factor of 2–3 compared to the rate of vesicle-uptake by liver and spleen following an intravenous injection. The peritoneal cavity functions as a reservior of vesicles for some hours. The rates of blood clearance and uptake of the vesicles by liver and spleen appear to be slower than that found for vesicles of different lipid composition.  相似文献   

8.
9.
10.
11.
12.
Summary Intravenous injection of mice with a massive dose ofCoccidioides immitis fungal elements caused a moderate inflammatory response after 6 hours. It was composed of small focal collections of lymphocytes and neutrophils surrounding the rounded fungal elements in the mouse lungs. No further change was noted at 24 hours. Spherules with endospores varying in diameter from 15 to 40 were seen at 48 and 54 hours. Neutrophils persisted throughout this time and increased only minimally; the lymphocytic response was more marked at these later observations.In conducting the research reported here, the investigators adhered to Principles of Laboratory Animal Care as established by the National Society for Medical Research.  相似文献   

13.
14.
15.
16.
BACKGROUND: Injection of naked DNA has been viewed as a safer alternative to current gene delivery systems; however, the rate of clearance from the circulation has been a constant barrier in developing these methods. Naked DNA after intravenous (i.v.) injection will be taken up by the liver and depredated by serum nucleases. MATERIALS AND METHODS: Our study examines the mechanisms involved in clearance of naked DNA by each compartment, the blood and the liver, in an in vivo mouse model. Confocal microscopy and transmission electron microscopy were employed to identify the type of cells taking up DNA and the barrier to DNA access to hepatocytes, respectively. RESULTS: Our data showed the liver could take up over 50% of 5 microg perfused pDNA, with a maximum 25 microg of pDNA during a single pass, and a slower clearance rate compared to that of liver uptake. It was demonstrated that naked DNA is primarily taken up by the liver endothelial cells and this endothelial barrier to transfection could be overcome by manually massaging the liver, which enlarges the fenestrae. CONCLUSIONS: This study clarifies the mechanism by which naked DNA is eliminated from the circulation after i.v. injection, focusing on the role of both the liver and blood compartments in vivo (i.e. mouse). With this knowledge, we can more clearly understand the mechanism of naked DNA clearance and develop more efficient strategies for DNA transfer in vivo.  相似文献   

17.
18.
A sensitive staining method was developed to localise the activity of myo-inositol-1-phosphatase on Polyacrylamide gels after electrophoresis. The method can also be used for non-specific phosphatases as well as for those specific phosphatases acting upon inositol polyphosphates which are prime cellular second messengers. One or two nmol of phosphate is sufficient and less than 3 μg of purified protein will facilitate the localisation of phosphatase. If more phosphatases are present in the enzyme preparation, a combination of inhibitors can be used to suppress the activities of unwanted phosphatases and the use of specific substrates will facilitate the localisation of enzyme of interest. For nomenclature of myo-inositol phosphates recent recommendations are followed. ReferBiochem. J.,258, 1–2 (1989) andEur. J. Biochem.,180, 485–486 (1989). L-myo-inositol-1-phosphate is presently otherwise called as D-myo-inositol-3-phosphate. Dedicated to Dr. F. Eisenberg Jr., on his 70th birthday.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号