首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
African trypanosomes induce sleeping sickness. The parasites are transmitted during the blood meal of a tsetse fly and appear primarily in blood and lymph vessels, before they enter the central nervous system. During the latter stage, trypanosomes induce a deregulation of sleep–wake cycles and some additional neurological disorders. Historically, it was assumed that trypanosomes cross the blood–brain barrier and settle somewhere between the brain cells. The brain, however, is a strictly controlled and immune‐privileged area that is completely surrounded by a dense barrier that covers the blood vessels: this is the blood–brain barrier. It is known that some immune cells are able to cross this barrier, but this requires a sophisticated mechanism and highly specific cell–cell interactions that have not been observed for trypanosomes within the mammalian host. Interestingly, trypanosomes injected directly into the brain parenchyma did not induce an infection. Likewise, after an intraperitoneal infection of rats, Trypanosoma brucei brucei was not observed within the brain, but appeared readily within the cerebrospinal fluid (CSF) and the meninges. Therefore, the parasite did not cross the blood–brain barrier, but the blood–CSF barrier, which is formed by the choroid plexus, i.e. the part of the ventricles where CSF is produced from blood. While there is no question that trypanosomes are able to invade the brain to induce a deadly encephalopathy, controversy exists about the pathway involved. This review lists experimental results that support crossing of the blood–brain barrier and of the blood–CSF barrier and discuss the implications that either pathway would have on infection progress and on the survival strategy of the parasite. For reasons discussed below, we prefer the latter pathway and suggest the existence of an additional distinct meningeal stage, from which trypanosomes could invade the brain via the Virchow–Robin space thereby bypassing the blood–brain barrier. We also consider healthy carriers, i.e. people living symptomless with the disease for up to several decades, and discuss implications the proposed meningeal stage would have for new anti‐trypanosomal drug development. Considering the re‐infection of blood, a process called relapse, we discuss the likely involvement of the newly described glymphatic connection between the meningeal space and the lymphatic system, that seems also be important for other infectious diseases.  相似文献   

2.
Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.  相似文献   

3.
The hypothalamo-choroidal tract   总被引:2,自引:0,他引:2  
Neurosecretory pathways were examined in normal male rats by the use of the immunoperoxidase technique for the localization of neurophysin in Bouin-fixed, deparaffinized sections. Using this technique two projections of extrahypothalamic neuorosecretory fibers can be traced to the sites of origin of the choid plexuses of both horns of the lateral ventricles. Neurophysin-containing axons originating primarily from the paraventricular field course dorsolaterad to enter the choroid fissure of the dorsal horn. A caudally direced group of fibers course ventrolaterad to enter the ventral horn choroid fissures. The supraoptic nuclear field is the primary contributor to the latter group. Scattered neurosecretory neurons are found in association with both pathways, usually in contact with blood vessels supplying the choroid plexuses, or in the telencephalic subependymal stroma. Neurosecretory fibers and terminals occur within the choroid fissures and juxtaventricular neuropil. The neurosecretory terminals in the choroid fissures appear as Herring-body type neurohemal organs; in the neuropil they appear as punctate peri-neuronal desities suggestive of synaptic contacts. Thes morphologic findings are discussed in relation to reports indicating the presence of antidiuretic, vasopressin-like activity in cerebrospinal fluid and choroid plexus extraxts together with ultrastructural evidence supportive of vasopressin-mediated transchoroidal cerebrospinal fluid absorption. These results and those of others indicated the possible involvement of the neurosecretory system in the regulation of brain interstitial-ventricular cerebrospinal fluid dynamics.  相似文献   

4.
Summary Intraventricular blood vessels and choroidal-like cells were studied using scanning electron microscopy and correlative light microscopy. The intraventricular blood vessels were covered on their ependymal surface with a layer of cells essentially identical to the ependyma of the choroid plexus in the gerbil. Similar choroidal-like cells were seen either singly or in clusters associated with the cerebrospinal fluid-contacting pinealocytes of the suprapineal recess. Processes of the cerebrospinal fluid-contacting pinealocytes were seen extending to and making contact with the choroidal-like cells. The intraventricular blood vessels appeared to be derived from the choroid plexus, and typically took one of three courses in and around the surface of the deep pineal: (1) the vessels or their equivalent were located in the suprapineal recess with no indication of penetration into the substance of the deep pineal; (2) the vessels coursed from the suprapineal recess around the anterior surface of the habenular commissure to enter the ventral surface of the deep pineal; or (3) the vessels entered the parenchyma of the deep pineal from its dorsal surface and could be seen coursing through the substance of the gland. The close association between the choroidal-like cells and the intraventricular blood vessels with the deep pineal gland add morphological support for the possibility of interaction between the cerebrospinal fluid, or perhaps the choroid plexus, and the deep pineal gland.  相似文献   

5.
During neurosurgery the freshly secreted extracellular fluid (ECF) from the choroid plexus was sampled with small pieces of application paper in three patients with intractable epilepsy. The samples were analyzed for free amino acids and for soluble proteins. The results were compared with corresponding data on extracellular fluid from the brain surface obtained with dialysis-perfusion as well as with the cerebrospinal fluid (CSF) acquired by lumbar punction. The dialysis data were calibrated against the paper results. The choroid plexus secretion had a high concentration of transthyretin as well as of an unidentified protein with an isoelectric point of 7.4. The cortical ECF exhibited high concentrations of tau-globulin and gamma-trace protein. Among the amino acids, glutamine had lower concentration in the choroid plexus secretion and higher concentrations in the ECF of the brain compared to the CSF. The amino acid derivative ethanolamine exhibited a similar pattern. This was interpreted to demonstrate that these compounds enter the CSF from the brain tissue. In contrast, alanine, serine, and taurine had a lower concentration in the CSF than in the plexus secretion which suggests that they are removed from the CSF by brain tissue.  相似文献   

6.
Expression of plasma protein genes in various parts of the rat brain was studied by hybridizing radioactive cDNA to RNA in cytoplasmic extracts. No mRNA could be detected in brain for the beta subunit of fibrinogen, major acute phase alpha 1-protein, alpha 1-acid glycoprotein and albumin. However, per g tissue, the choroid plexus contained at least 100 times larger amounts of prealbumin mRNA than the liver and about the same amount of transferrin mRNA as liver. No prealbumin mRNA was found in other areas of the brain. The results obtained suggest very active synthesis of prealbumin in choroid plexus, which would be an important link in the transport of thyroid hormones from the blood to the brain via the cerebrospinal fluid.  相似文献   

7.
Drugs to treat African trypanosomiasis are toxic, expensive and subject to parasite resistance. New drugs are urgently being sought. Although the existing drug, eflornithine, is assumed to reach the brain in high concentrations, little is known about how it crosses the healthy and infected blood-brain barrier. This information is essential for the design of drug combinations and new drugs. This study used novel combinations of animal models to address these omissions. Eflornithine crossed the healthy blood-CNS interfaces poorly, but this could be improved by co-administering suramin, but not nifurtimox, pentamidine or melarsoprol. Work using a murine model of sleeping sickness demonstrated that Trypanosoma brucei brucei crossed the blood-CNS interfaces, which remained functional, early in the course of infection. Concentrations of brain parasites increased during the infection and this resulted in detectable blood-brain barrier, but not choroid plexus, dysfunction at day 28 post-infection with resultant increases in eflornithine brain delivery. Barrier integrity was never restored and the animals died at day 37.9 +/- 1.2. This study indicates why an intensive treatment regimen of eflornithine is required (poor blood-brain barrier penetration) and suggests a possible remedy (combining eflornithine with suramin). The blood-brain barrier retains functionality until a late, possibly terminal stage, of trypanosoma infection.  相似文献   

8.
Barriers in the Immature Brain   总被引:8,自引:0,他引:8  
1. The term blood–brain barrier describes a range of mechanisms that control the exchange of molecules between the internal environment of the brain and the rest of the body.2. The underlying morphological feature of these barriers is the presence of tight junctions which are present between cerebral endothelial cells and between choroid plexus epithelial cells. These junctions are present in blood vessels in fetal brain and are effective in restricting entry of proteins from blood into brain and cerebrospinal fluid. However, some features of the junctions appear to mature during brain development.3. Although proteins do not penetrate into the extracellular space of the immature brain, they do penetrate into cerebrospinal fluid by a mechanism that is considered in the accompanying review (Dziegielewska et al., 2000).4. In the immature brain there are additional morphological barriers at the interface between cerebrospinal fluid and brain tissue: strap junctions at the inner neuroependymal surface and these and other intercellular membrane specializations at the outer (pia–arachnoid) surface. These barriers disappear later in development and are absent in the adult.5. There is a decline in permeability to low molecular weight lipid-insoluble compounds during brain development which appears to be due mainly to a decrease in the intrinsic permeability of the blood–brain and blood–cerebrospinal fluid interfaces.  相似文献   

9.
African sleeping sickness is a debilitating and often fatal disease caused by tsetse fly transmitted African trypanosomes. These extracellular protozoan parasites survive in the human bloodstream by virtue of a dense cell surface coat made of variant surface glycoprotein. The parasites have a repertoire of several hundred immunologically distinct variant surface glycoproteins and they evade the host immune response by antigenic variation. All variant surface glycoproteins are anchored to the plasma membrane via glycosylphosphatidylinositol membrane anchors and compounds that inhibit the assembly or transfer of these anchors could have trypanocidal potential. This article compares glycosylphosphatidylinositol biosynthesis in African trypanosomes and mammalian cells and identifies several steps that could be targets for the development of parasite-specific therapeutic agents.  相似文献   

10.
11.
Choroid plexus protects cerebrospinal fluid against toxic metals.   总被引:9,自引:0,他引:9  
Although heavy metal ions are known to be toxic to the central nervous system (CNS), the mechanisms by which the CNS may protect itself from initial challenges of such toxic ions is unknown. The choroid plexus is the principal site of formation of the cerebrospinal fluid (CSF) which bathes the brain. We have determined in rats and rabbits that after intraperitoneal administration of lead, cadmium, mercury, and arsenic compounds, these toxic metal ions accumulated in the lateral choroid plexus at concentrations of Pb, Hg, and As that were 70-, 95-, and 40-fold higher, respectively, than those found in the CSF. Cd was not detected in the CSF. In addition, concentrations of these heavy metal ions were found to be many fold greater in the choroid plexus than in the brain or blood. The accumulation of Pb in the choroid plexus was dose-dependent and time-related. When the choroid plexus was preincubated, in vitro, with ouabain (1.5 mM), the uptake of Cd from the CSF side of the choroid plexus was inhibited 57%. Cadmium metallothionein was not found in the choroid plexus. Whereas the concentration of reduced glutathione in the choroid plexus was less than that in the brain cortex, the concentration of cystine was fourfold greater. The lateral choroid plexus sequesters Pb, Cd, As, and Hg. It appears to be one of the important mechanisms that protects the CSF and the brain from the fluxes of toxic heavy metals in the blood.  相似文献   

12.
African trypanosomes are flagellated protozoan parasites that cause sleeping sickness and are transmitted by the bite of the tsetse fly. To complete their life cycle in the insect, trypanosomes reach the salivary glands and transform into the metacyclic infective form. The latter are expelled with the saliva at each blood meal during the whole life of the insect. Here, we reveal a means by which the continuous production of infective parasites could be ensured. Dividing trypanosomes present in the salivary glands of infected tsetse flies were monitored by live video-microscopy and by quantitative immunofluorescence analysis using molecular markers for the cytoskeleton and for surface antigens. This revealed the existence of two distinct modes of trypanosome proliferation occurring simultaneously in the salivary glands. The first cycle produces two equivalent cells that are not competent for infection and are attached to the epithelium. This mode of proliferation is predominant at the early steps of infection, ensuring a rapid colonization of the glands. The second mode is more frequent at later stages of infection and involves an asymmetric division. It produces a daughter cell that matures into the infective metacyclic form that is released in the saliva, as demonstrated by the expression of specific molecular markers - the calflagins. The levels of these calcium-binding proteins increase exclusively in the new flagellum during the asymmetric division, showing the commitment of the future daughter cell to differentiation. The coordination of these two alternative cell cycles contributes to the continuous production of infective parasites, turning the tsetse fly into an efficient and long-lasting vector for African trypanosomes.  相似文献   

13.
African trypanosomes are flagellated protozoan parasites transmitted by the bite of tsetse flies and responsible for sleeping sickness in humans. Their complex development in the tsetse digestive tract requires several differentiation and migration steps that are thought to rely on trypanosome motility. We used a functional approach in vivo to demonstrate that motility impairment prevents trypanosomes from developing in their vector. Deletion of the outer dynein arm component DNAI1 results in strong motility defects but cells remain viable in culture. However, although these mutant trypanosomes could infect the tsetse fly midgut, they were neither able to reach the foregut nor able to differentiate into the next stage, thus failing to complete their parasite cycle. This is the first in vivo demonstration that trypanosome motility is essential for the accomplishment of the parasite cycle.  相似文献   

14.
Summary The development of the adrenergic sympathetic innervation of the rabbit choroid plexus system was studied prenatally and up to two months after birth by a combination of fluorescence histochemistry (formaldehyde and glyoxylic acid methods) and quantitative enzymatic determinations of noradrenaline. The first signs of adrenergic nerves are found in the plexus of the third ventricle within the first day after birth. Fluorescent fibres subsequently appear in the choroid plexuses of the lateral ventricles (five days post partum) and the fourth ventricle (two weeks post partum). During the following development nerve fibres grow along blood vessels to form a plexus located between small vessels and the overlying epithelium. The nerve plexus, with varicose axon terminals, is fully developed at three weeks post partum, and maturation is then established by an increase in the number of terminals within the network of axons. There is a good agreement between (a) the development of the fluorescent nerves and histochemically visible adrenergic innervation, and (b) the tissue level of noradrenaline in the various choroid plexuses. Against the background of available information on the development of the secretory functions in choroid plexus, it is concluded that possibilities for a sympathetic neurogenic influence on the formation of cerebrospinal fluid exist already a few weeks after birth.  相似文献   

15.
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.  相似文献   

16.
Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites Trypanosoma brucei (T. b.) gambiense or T. b. rhodesiense and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage T. b. rhodesiense infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-β-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties in vitro and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy.  相似文献   

17.

Background

Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation.

Methods

We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test.

Results

We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2?>?apoE3?>?apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state.

Conclusions

Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
  相似文献   

18.
Abstract— The relationship between isotopic sodium entry into cerebrospinal fluid (CSF) from blood and cisternal potassium concentration was studied using ventriculo-cisternal perfusion in the rabbit. The entry of sodium into CSF was separated into 2 components. The fast component was significantly correlated with cisternal potassium concentration during perfusions with a potassium-free artificial CSF. ATPase activity in the homogenised choroid plexus was shown to be sensitive to potassium over a range of concentrations similar to that in the perfusion studies. The results are interpreted as showing a potassium-sensitive entry of 24Na across the choroid plexus due to a sodium-pump situated in the apical membrane of the choroid plexus. The effects of low concentrations of lithium (0.6–1.2 mm) on 24Na entry into CSF and brain and on CSF secretion were studied. When applied via the ventricles lithium caused a 30–39% stimulation of the fast component of sodium entry and a 28% stimulation of CSF secretion. When given via the blood lithium inhibited the fast component of sodium entry and CSF secretion by 43% and 40% respectively. No effects of lithium were found on the slow component of sodium entry into CSF or sodium entry into brain. The results suggest that lithium at low (0.6–1.2 mM) concentrations can stimulate the choroid plexus sodium-pump at the potassium-sensitive side and inhibit it at the sodium-sensitive side.  相似文献   

19.
Isolated perfused choroid plexus preparations from sheep were used to study the effects of low concentrations of magnesium in the perfusion fluid on the transfer of magnesium into choroid plexus fluid (CPF). A perfusion fluid of similar electrolyte composition to sheep blood resulted in CPF similar to ventricular cerebrospinal fluid at a rate of 2.2 microliter min-1 mg-1 dry choroidal tissue. Decreasing the concentration of magnesium in the perfusion fluid caused a fall in the concentration of magnesium in the CPF, although it remained higher than in the perfusion fluid. The rate of transfer of magnesium from the perfusion fluid to the CPF decreased in the presence of high levels of potassium in the perfusion fluid. But decreasing the concentration of calcium in the perfusion fluid had no effect on magnesium transfer rates. These results suggest that the ability of the choroid plexus to transport magnesium against a concentration gradient is an important control of the concentration of the cerebrospinal fluid. However, this ability is insufficient to maintain cerebrospinal fluid concentrations of magnesium at normal levels when the blood magnesium concentration is below about 0.5 mmol l-1.  相似文献   

20.
beta-Amyloid (Abeta) concentration in the cerebrospinal fluid (CSF) of the brain may be regulated by the choroid plexus, which forms a barrier between blood and brain CSF. Abeta uptake from CSF was determined as its volume of distribution (V(D)) into isolated rat choroid plexus tissue. The V(D) of [125I]Abeta1-40 was corrected by subtraction of the V(D) of [14C]sucrose, a marker for extracellular space and diffusion. Abeta uptake into choroid plexus was time and temperature dependent. Uptake of [125I]Abeta was saturable. Abeta uptake was not affected by addition of transthyretin or apolipoprotein E3. In studies with primary culture monolayers of choroidal epithelial cells in Transwells, Abeta permeability across cells, corrected by [(14)C]sucrose, was greater from the CSF-facing membrane than from the blood-facing membrane. Similarly, cellular accumulation of [125I]Abeta was concentrative from both directions and was greater from the CSF-facing membrane, suggesting a bias for efflux. Overall, these results suggest the choroid plexus selectively cleanses Abeta from the CSF by an undetermined mechanism(s), potentially reducing Abeta from normal brains and the brains of Alzheimer's disease patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号