首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Itzhaki Z 《PloS one》2011,6(7):e21724
Protein-domains play an important role in mediating protein-protein interactions. Furthermore, the same domain-pairs mediate different interactions in different contexts and in various organisms, and therefore domain-pairs are considered as the building blocks of interactome networks. Here we extend these principles to the host-virus interface and find the domain-pairs that potentially mediate human-herpesvirus interactions. Notably, we find that the same domain-pairs used by other organisms for mediating their interactions underlie statistically significant fractions of human-virus protein inter-interaction networks. Our analysis shows that viral domains tend to interact with human domains that are hubs in the human domain-domain interaction network. This may enable the virus to easily interfere with a variety of mechanisms and processes involving various and different human proteins carrying the relevant hub domain. Comparative genomics analysis provides hints at a molecular mechanism by which the virus acquired some of its interacting domains from its human host.  相似文献   

2.
Teyra J  Sidhu SS  Kim PM 《FEBS letters》2012,586(17):2631-2637
Peptide-binding domains play a critical role in regulation of cellular processes by mediating protein interactions involved in signalling. In recent years, the development of large-scale technologies has enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. These efforts have provided significant insights into the binding specificities of these modular domains. Many research groups have taken advantage of this unprecedented volume of specificity data and have developed a variety of new algorithms for the prediction of binding specificities of peptide-binding domains and for the prediction of their natural binding targets. This knowledge has also been applied to the design of synthetic peptide-binding domains in order to rewire protein-protein interaction networks. Here, we describe how these experimental technologies have impacted on our understanding of peptide-binding domain specificities and on the elucidation of their natural ligands. We discuss SH3 and PDZ domains as well characterized examples, and we explore the feasibility of expanding high-throughput experiments to other peptide-binding domains.  相似文献   

3.
MOTIVATION: Identifying protein-protein interactions is critical for understanding cellular processes. Because protein domains represent binding modules and are responsible for the interactions between proteins, computational approaches have been proposed to predict protein interactions at the domain level. The fact that protein domains are likely evolutionarily conserved allows us to pool information from data across multiple organisms for the inference of domain-domain and protein-protein interaction probabilities. RESULTS: We use a likelihood approach to estimating domain-domain interaction probabilities by integrating large-scale protein interaction data from three organisms, Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. The estimated domain-domain interaction probabilities are then used to predict protein-protein interactions in S.cerevisiae. Based on a thorough comparison of sensitivity and specificity, Gene Ontology term enrichment and gene expression profiles, we have demonstrated that it may be far more informative to predict protein-protein interactions from diverse organisms than from a single organism. AVAILABILITY: The program for computing the protein-protein interaction probabilities and supplementary material are available at http://bioinformatics.med.yale.edu/interaction.  相似文献   

4.
We demonstrate that protein–protein interaction networks in several eukaryotic organisms contain significantly more self-interacting proteins than expected if such homodimers randomly appeared in the course of the evolution. We also show that on average homodimers have twice as many interaction partners than non-self-interacting proteins. More specifically, the likelihood of a protein to physically interact with itself was found to be proportional to the total number of its binding partners. These properties of dimers are in agreement with a phenomenological model, in which individual proteins differ from each other by the degree of their ‘stickiness’ or general propensity toward interaction with other proteins including oneself. A duplication of self-interacting proteins creates a pair of paralogous proteins interacting with each other. We show that such pairs occur more frequently than could be explained by pure chance alone. Similar to homodimers, proteins involved in heterodimers with their paralogs on average have twice as many interacting partners than the rest of the network. The likelihood of a pair of paralogous proteins to interact with each other was also shown to decrease with their sequence similarity. This points to the conclusion that most of interactions between paralogs are inherited from ancestral homodimeric proteins, rather than established de novo after duplication. We finally discuss possible implications of our empirical observations from functional and evolutionary standpoints.  相似文献   

5.
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue.  相似文献   

6.
The integration of molecular networks with other types of data, such as changing levels of gene expression or protein-structural features, can provide richer information about interactions than the simple node-and-edge representations commonly used in the network community. For example, the mapping of 3D-structural data onto networks enables classification of proteins into singlish- or multi-interface hubs (depending on whether they have >2 interfaces). Similarly, interactions can be classified as permanent or transient, depending on whether their interface is used by only one or by multiple partners. Here, we incorporate an additional dimension into molecular networks: dynamic conformational changes. We parse the entire PDB structural databank for alternate conformations of proteins and map these onto the protein interaction network, to compile a first version of the Dynamic Structural Interaction Network (DynaSIN). We make this network available as a readily downloadable resource file, and we then use it to address a variety of downstream questions. In particular, we show that multi-interface hubs display a greater degree of conformational change than do singlish-interface ones; thus, they show more plasticity which perhaps enables them to utilize more interfaces for interactions. We also find that transient associations involve smaller conformational changes than permanent ones. Although this may appear counterintuitive, it is understandable in the following framework: as proteins involved in transient interactions shuttle between interchangeable associations, they interact with domains that are similar to each other and so do not require drastic structural changes for their activity. We provide evidence for this hypothesis through showing that interfaces involved in transient interactions bind fewer classes of domains than those in a control set.  相似文献   

7.
PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.  相似文献   

8.
M Katan  V L Allen 《FEBS letters》1999,452(1-2):36-40
The pleckstrin homology and C2 domains are modular protein structures involved in mediating intermolecular interactions. Although they represent distinct domains, there are several parallels regarding their function and type of interactions in which they participate. Both domains are stable structural entities that incorporate variable regions which, in different proteins, can be adapted to perform a specific function through binding to membrane phospholipids or specific protein ligands. A number of recent examples illustrate the function of some of these domains in regulated membrane attachment, with an important role in many cellular signalling pathways.  相似文献   

9.
CUB domains are 110-residue protein motifs exhibiting a β-sandwich fold and mediating protein-protein interactions in various extracellular proteins. Recent X-ray structural and mutagenesis studies have led to the identification of a particular CUB domain subset, cbCUB (Ca(2+)-binding CUB domain). Unlike other CUB domains, these harbour a homologous Ca(2+)-binding site that underlies a conserved binding site mediating ionic interaction between two of the three conserved acidic Ca(2+) ligands and a basic (lysine or arginine) residue of a protein ligand, similar to the interactions mediated by the low-density lipoprotein receptor family. cbCUB-mediated protein-ligand interactions usually involve multipoint attachment through several cbCUBs, resulting in high-affinity binding through avidity, despite the low affinity of individual interactions. The aim of the present review is to summarize our current knowledge about the structure and functions of cbCUBs, which represent the majority of the known CUB repertoire and are involved in a variety of major biological functions, including immunity and development, as well as in various cancer types. Examples discussed in the present review include a wide range of soluble and membrane-associated human proteins, as well as some archaeal and invertebrate proteins. The fact that these otherwise unrelated proteins share a common Ca(2+)-dependent ligand-binding ability suggests a mechanism inherited from very primitive ancestors. The information provided in the present review should stimulate further investigations on the crucial interactions mediated by cbCUB-containing proteins.  相似文献   

10.
In the postgenomic era, one of the most interesting and important challenges is to understand protein interactions on a large scale. The physical interactions between protein domains are fundamental to the workings of a cell: in multi-domain polypeptide chains, in multi-subunit proteins and in transient complexes between proteins that also exist independently. To study the large-scale patterns and evolution of interactions between protein domains, we view interactions between protein domains in terms of the interactions between structural families of evolutionarily related domains. This allows us to classify 8151 interactions between individual domains in the Protein Data Bank and the yeast Saccharomyces cerevisiae in terms of 664 types of interactions, between protein families. At least 51 interactions do not occur in the Protein Data Bank and can only be derived from the yeast data. The map of interactions between protein families has the form of a scale-free network, meaning that most protein families only interact with one or two other families, while a few families are extremely versatile in their interactions and are connected to many families. We observe that almost half of all known families engage in interactions with domains from their own family. We also see that the repertoires of interactions of domains within and between polypeptide chains overlap mostly for two specific types of protein families: enzymes and same-family interactions. This suggests that different types of protein interaction repertoires exist for structural, functional and regulatory reasons. Copyright 12001 Academic Press.  相似文献   

11.
Protein-protein interactions within the membrane are involved in many vital cellular processes. Consequently, deficient oligomerization is associated with known diseases. The interactions can be partially or fully mediated by transmembrane domains (TMD). However, in contrast to soluble regions, our knowledge of the factors that control oligomerization and recognition between the membrane-embedded domains is very limited. Due to the unique chemical and physical properties of the membrane environment, rules that apply to interactions between soluble segments are not necessarily valid within the membrane. This review summarizes our knowledge on the sequences mediating TMD-TMD interactions which include conserved motifs such as the GxxxG, QxxS, glycine and leucine zippers, and others. The review discusses the specific role of polar, charged and aromatic amino acids in the interface of the interacting TMD helices. Strategies to determine the strength, dynamics and specificities of these interactions by experimental (ToxR, TOXCAT, GALLEX and FRET) or various computational approaches (molecular dynamic simulation and bioinformatics) are summarized. Importantly, the contribution of the membrane environment to the TMD-TMD interaction is also presented. Studies utilizing exogenously added TMD peptides have been shown to influence in vivo the dimerization of intact membrane proteins involved in various diseases. The chirality independent TMD-TMD interactions allows for the design of novel short d- and l-amino acids containing TMD peptides with advanced properties. Overall these studies shed light on the role of specific amino acids in mediating the assembly of the TMDs within the membrane environment and their contribution to protein function. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

12.
Holloway AK  Begun DJ 《PloS one》2007,2(10):e1113
Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties.  相似文献   

13.
Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory. As valuable as they are, such experimental approaches studying protein interactomes have certain limitations that can be complemented by the computational methods for predicting protein interactions. In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions. We discuss the applicability of computational methods to different types of prediction problems and point out limitations common to all of them.  相似文献   

14.
We present a method to identify and characterize interactions between a fluorophore-labeled protein ('prey') and a membrane protein ('bait') in live mammalian cells. Cells are plated on micropatterned surfaces functionalized with antibodies to the bait extracellular domain. Bait-prey interactions are assayed through the redistribution of the fluorescent prey. We used the method to characterize the interaction between human CD4, the major co-receptor in T-cell activation, and human Lck, the protein tyrosine kinase essential for early T-cell signaling. We measured equilibrium associations by quantifying Lck redistribution to CD4 micropatterns and studied interaction dynamics by photobleaching experiments and single-molecule imaging. In addition to the known zinc clasp structure, the Lck membrane anchor in particular had a major impact on the Lck-CD4 interaction, mediating direct binding and further stabilizing the interaction of other Lck domains. In total, membrane anchorage increased the interaction lifetime by two orders of magnitude.  相似文献   

15.
16.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

17.
There are over 10,000 C2H2-type zinc finger (ZF) domains distributed among more than 1,000 ZF proteins in the human genome. These domains are frequently observed to be involved in sequence-specific DNA binding, and uncharacterized domains are typically assumed to facilitate DNA interactions. However, some ZFs also facilitate binding to proteins or RNA. Over 100 Cys2-His2 (C2H2) ZF-protein interactions have been described. We initially attempted a bioinformatics analysis to identify sequence features that would predict a DNA- or protein-binding function. These efforts were complicated by several issues, including uncertainties about the full functional capabilities of the ZFs. We therefore applied an unbiased approach to directly examine the potential for ZFs to facilitate DNA or protein interactions. The human OLF-1/EBF associated zinc finger (OAZ) protein was used as a model. The human O/E-1-associated zinc finger protein (hOAZ) contains 30 ZFs in 6 clusters, some of which have been previously indicated in DNA or protein interactions. DNA binding was assessed using a target site selection (CAST) assay, and protein binding was assessed using a yeast two-hybrid assay. We observed that clusters known to bind DNA could facilitate specific protein interactions, but clusters known to bind protein did not facilitate specific DNA interactions. Our primary conclusion is that DNA binding is a more restricted function of ZFs, and that their potential for mediating protein interactions is likely greater. These results suggest that the role of C2H2 ZF domains in protein interactions has probably been underestimated. The implication of these findings for the prediction of ZF function is discussed.  相似文献   

18.
Mitochondria in cells comprise a tubulovesicular reticulum shaped by dynamic fission and fusion events. The multimeric dynamin-like GTPase Drp1 is a critical protein mediating mitochondrial division. It harbors multiple motifs including GTP-binding, middle, and GTPase effector (GED) domains that are important for both intramolecular and intermolecular interactions. As for other members of the dynamin superfamily, such interactions are critical for assembly of higher-order structures and cooperative increases in GTPase activity. Although the functions of Drp1 in cells have been extensively studied, mechanisms underlying its regulation remain less clear. Here, we have identified cAMP-dependent protein kinase-dependent phosphorylation of Drp1 within the GED domain at Ser(637) that inhibits Drp1 GTPase activity. Mechanistically, this change in GTPase activity likely derives from decreased interaction of GTP-binding/middle domains with the GED domain since the phosphomimetic S637D mutation impairs this intramolecular interaction but not Drp1-Drp1 intermolecular interactions. Using the phosphomimetic S637D substitution, we also demonstrate that mitochondrial fission is prominently inhibited in cells. Thus, protein phosphorylation at Ser(637) results in clear alterations in Drp1 function and mitochondrial morphology that are likely involved in dynamic regulation of mitochondrial division in cells.  相似文献   

19.
Endomembrane trafficking is one of the most prominent cytological features of eukaryotes. Given their widespread distribution and specialization, coiled‐coil domains, coatomer domains, small GTPases and Longin domains are considered primordial ‘building blocks’ of the membrane trafficking machineries. Longin domains are conserved across eukaryotes and were likely to be present in the Last Eukaryotic Common Ancestor. The Longin fold is based on the α‐β‐α sandwich architecture and a unique topology, possibly accounting for the special adaptation to the eukaryotic trafficking machinery. The ancient P er A RNT S im (PAS) and cG MP‐specific phosphodiesterases, A denylyl cyclases and F hlA (GAF) family domains show a similar architecture, and the identification of prokaryotic counterparts of GAF domains involved in trafficking provides an additional connection for the endomembrane system back into the pre‐eukaryotic world. Proteome‐wide, comparative bioinformatic analyses of the domains reveal three binding regions (A, B and C) mediating either specific or conserved protein–protein interactions. While the A region mediates intra‐ and inter‐molecular interactions, the B region is involved in binding small GTPases, thus providing an evolutionary connection among major building blocks in the endomembrane system. Finally, we propose that the peculiar interaction surface of the C region of the Longin domain allowed it to extensively integrate into the endomembrane trafficking machinery in the earliest stages of building the eukaryotic cell.  相似文献   

20.
Cation-pi interactions play an important role to the stability of protein structures. In our earlier work, we have analyzed the influence and energetic contribution of cation-pi interactions in three-dimensional structures of membrane proteins. In this work, we investigate the characteristic features of residues that are involved in cation-pi interactions. We have computed several parameters, such as surrounding hydrophobicity, number of long-range contacts, conservation score and normalized B-factor for all these residues and identified their location, whether in the membrane or at surface. We found that the cation-pi interactions are mainly formed by long-range interactions. The cationic residues involved in cation-pi interactions have higher surrounding hydrophobicity than their average values in the whole dataset and an opposite trend is observed for aromatic residues. In transmembrane helical proteins, except Phe, all other residues that are responsible for cation-pi interactions are highly conserved with other related protein sequences whereas in transmembrane strand proteins, an appreciable conservation is observed only for Arg. The analysis on the flexibility of residues reveals that the cation-pi interaction forming residues are more stable than other residues. The results obtained in the present study would be helpful to understand the role of cation-pi interactions in the structure and folding of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号