首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
Mirror neurons, located in the premotor cortex of macaque monkeys, are activated both by the performance and the passive observation of particular goal-directed actions. Although this property would seem to make them the ideal neural substrate for imitation, the puzzling fact is that monkeys simply do not imitate. Indeed, imitation appears to be a uniquely human ability. We are thus left with a fascinating question: if not imitation, what are mirror neurons for? Recent advances in the study of non-human primate social cognition suggest a surprising potential answer.  相似文献   

2.
fMRI adaptation reveals mirror neurons in human inferior parietal cortex   总被引:1,自引:0,他引:1  
Mirror neurons, as originally described in the macaque, have two defining properties [1, 2]: They respond specifically to a particular action (e.g., bringing an object to the mouth), and they produce their action-specific responses independent of whether the monkey executes the action or passively observes a conspecific performing the same action. In humans, action observation and action execution engage a network of frontal, parietal, and temporal areas. However, it is unclear whether these responses reflect the activity of a single population that represents both observed and executed actions in a common neural code or the activity of distinct but overlapping populations of exclusively perceptual and motor neurons [3]. Here, we used fMRI adaptation to show that the right inferior parietal lobe (IPL) responds independently to specific actions regardless of whether they are observed or executed. Specifically, responses in the right IPL were attenuated when participants observed a recently executed action relative to one that had not previously been performed. This adaptation across action and perception demonstrates that the right IPL responds selectively to the motoric and perceptual representations of actions and is the first evidence for a neural response in humans that shows both defining properties of mirror neurons.  相似文献   

3.
Somatic and motor components of action simulation   总被引:1,自引:0,他引:1  
Seminal studies in monkeys report that the viewing of actions performed by other individuals activates frontal and parietal cortical areas typically involved in action planning and execution. That mirroring actions might rely on both motor and somatosensory components is suggested by reports that action observation and execution increase neural activity in motor and in somatosensory areas. This occurs not only during observation of naturalistic movements but also during the viewing of biomechanically impossible movements that tap the afferent component of action, possibly by eliciting strong somatic feelings in the onlooker. Although somatosensory feedback is inherently linked to action execution, information on the possible causative role of frontal and parietal cortices in simulating motor and sensory action components is lacking. By combining low-frequency repetitive and single-pulse transcranial magnetic stimulation, we found that virtual lesions of ventral premotor cortex (vPMc) and primary somatosensory cortex (S1) suppressed mirror motor facilitation contingent upon observation of possible and impossible movements, respectively. In contrast, virtual lesions of primary motor cortex did not influence mirror motor facilitation. The reported double dissociation suggests that vPMc and S1 play an active, differential role in simulating efferent and afferent components of observed actions.  相似文献   

4.
I know what you are doing. a neurophysiological study   总被引:34,自引:0,他引:34  
  相似文献   

5.
It has been suggested that social impairments observed in individuals with autism spectrum disorder (ASD) can be partly explained by an abnormal mirror neuron system (MNS) 1., 2.. Studies on monkeys have shown that mirror neurons are cells in premotor area F5 that discharge when a monkey executes or sees a specific action or when it hears the corresponding action-related sound 3., 4., 5.. Evidence for the presence of a MNS in humans comes in part from studies using transcranial magnetic stimulation (TMS), where a change in the amplitude of the TMS-induced motor-evoked potentials (MEPs) during action observation has been demonstrated 6., 7., 8., 9.. These data suggest that actions are understood when the representation of that action is mapped onto the observer's own motor structures [10]. To determine if the neural mechanism matching action observation and execution is anomalous in individuals with ASD, TMS was applied over the primary motor cortex (M1) during observation of intransitive, meaningless finger movements. We show that overall modulation of M1 excitability during action observation is significantly lower in individuals with ASD compared with matched controls. In addition, we find that basic motor cortex abnormalities do not underlie this impairment.  相似文献   

6.
Etzel JA  Gazzola V  Keysers C 《PloS one》2008,3(11):e3690
The discovery of mirror neurons has suggested a potential neural basis for simulation and common coding theories of action perception, theories which propose that we understand other people's actions because perceiving their actions activates some of our neurons in much the same way as when we perform the actions. We propose testing this model directly in humans with functional magnetic resonance imaging (fMRI) by means of cross-modal classification. Cross-modal classification evaluates whether a classifier that has learned to separate stimuli in the sensory domain can also separate the stimuli in the motor domain. Successful classification provides support for simulation theories because it means that the fMRI signal, and presumably brain activity, is similar when perceiving and performing actions. In this paper we demonstrate the feasibility of the technique by showing that classifiers which have learned to discriminate whether a participant heard a hand or a mouth action, based on the activity patterns in the premotor cortex, can also determine, without additional training, whether the participant executed a hand or mouth action. This provides direct evidence that, while perceiving others' actions, (1) the pattern of activity in premotor voxels with sensory properties is a significant source of information regarding the nature of these actions, and (2) that this information shares a common code with motor execution.  相似文献   

7.
Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons’ discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited ‘classical’ mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation (‘suppression mirror-neurons’). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.  相似文献   

8.
Chersi F  Ferrari PF  Fogassi L 《PloS one》2011,6(11):e27652
The inferior part of the parietal lobe (IPL) is known to play a very important role in sensorimotor integration. Neurons in this region code goal-related motor acts performed with the mouth, with the hand and with the arm. It has been demonstrated that most IPL motor neurons coding a specific motor act (e.g., grasping) show markedly different activation patterns according to the final goal of the action sequence in which the act is embedded (grasping for eating or grasping for placing). Some of these neurons (parietal mirror neurons) show a similar selectivity also during the observation of the same action sequences when executed by others. Thus, it appears that the neuronal response occurring during the execution and the observation of a specific grasping act codes not only the executed motor act, but also the agent's final goal (intention).In this work we present a biologically inspired neural network architecture that models mechanisms of motor sequences execution and recognition. In this network, pools composed of motor and mirror neurons that encode motor acts of a sequence are arranged in form of action goal-specific neuronal chains. The execution and the recognition of actions is achieved through the propagation of activity bursts along specific chains modulated by visual and somatosensory inputs.The implemented spiking neuron network is able to reproduce the results found in neurophysiological recordings of parietal neurons during task performance and provides a biologically plausible implementation of the action selection and recognition process.Finally, the present paper proposes a mechanism for the formation of new neural chains by linking together in a sequential manner neurons that represent subsequent motor acts, thus producing goal-directed sequences.  相似文献   

9.
Schema design and implementation of the grasp-related mirror neuron system   总被引:6,自引:0,他引:6  
 Mirror neurons within a monkey's premotor area F5 fire not only when the monkey performs a certain class of actions but also when the monkey observes another monkey (or the experimenter) perform a similar action. It has thus been argued that these neurons are crucial for understanding of actions by others. We offer the hand-state hypothesis as a new explanation of the evolution of this capability: the basic functionality of the F5 mirror system is to elaborate the appropriate feedback – what we call the hand state– for opposition-space based control of manual grasping of an object. Given this functionality, the social role of the F5 mirror system in understanding the actions of others may be seen as an exaptation gained by generalizing from one's own hand to an other's hand. In other words, mirror neurons first evolved to augment the “canonical” F5 neurons (active during self-movement based on observation of an object) by providing visual feedback on “hand state,” relating the shape of the hand to the shape of the object. We then introduce the MNS1 (mirror neuron system 1) model of F5 and related brain regions. The existing Fagg–Arbib–Rizzolatti–Sakata model represents circuitry for visually guided grasping of objects, linking the anterior intraparietal area (AIP) with F5 canonical neurons. The MNS1 model extends the AIP visual pathway by also modeling pathways, directed toward F5 mirror neurons, which match arm–hand trajectories to the affordances and location of a potential target object. We present the basic schemas for the MNS1 model, then aggregate them into three “grand schemas”– visual analysis of hand state, reach and grasp, and the core mirror circuit – for each of which we present a useful implementation (a non-neural visual processing system, a multijoint 3-D kinematics simulator, and a learning neural network, respectively). With this implementation we show how the mirror system may learnto recognize actions already in the repertoire of the F5 canonical neurons. We show that the connectivity pattern of mirror neuron circuitry can be established through training, and that the resultant network can exhibit a range of novel, physiologically interesting behaviors during the process of action recognition. We train the system on the basis of final grasp but then observe the whole time course of mirror neuron activity, yielding predictions for neurophysiological experiments under conditions of spatial perturbation, altered kinematics, and ambiguous grasp execution which highlight the importance of the timingof mirror neuron activity. Received: 6 August 2001 / Accepted in revised form: 5 February 2002  相似文献   

10.
The mirror neuron system and the consequences of its dysfunction   总被引:9,自引:0,他引:9  
The discovery of premotor and parietal cells known as mirror neurons in the macaque brain that fire not only when the animal is in action, but also when it observes others carrying out the same actions provides a plausible neurophysiological mechanism for a variety of important social behaviours, from imitation to empathy. Recent data also show that dysfunction of the mirror neuron system in humans might be a core deficit in autism, a socially isolating condition. Here, we review the neurophysiology of the mirror neuron system and its role in social cognition and discuss the clinical implications of mirror neuron dysfunction.  相似文献   

11.
Canonically, 'mirror neurons' are cells in area F5 of the ventral premotor cortex that are active during both observation and execution of goal-directed movements. Recently, cells with similar properties have been observed in a number of other areas in the motor system, including the primary motor cortex. Mirror neurons are a part of a system whose function is thought to involve the prediction and interpretation of the sensory consequences of our own actions as well as the actions of others. Mirror-like responses are relevant to the development of brain-machine interfaces (BMIs) because they provide a robust way to map neural activity to behavior, and because they represent high-level information about goals and intentions that may have utility in future BMI applications.  相似文献   

12.
How do we understand the actions of other individuals if we can only hear them? Auditory mirror neurons respond both while monkeys perform hand or mouth actions and while they listen to sounds of similar actions . This system might be critical for auditory action understanding and language evolution . Preliminary evidence suggests that a similar system may exist in humans . Using fMRI, we searched for brain areas that respond both during motor execution and when individuals listened to the sound of an action made by the same effector. We show that a left hemispheric temporo-parieto-premotor circuit is activated in both cases, providing evidence for a human auditory mirror system. In the left premotor cortex, a somatotopic pattern of activation was also observed: A dorsal cluster was more involved during listening and execution of hand actions, and a ventral cluster was more involved during listening and execution of mouth actions. Most of this system appears to be multimodal because it also responds to the sight of similar actions. Finally, individuals who scored higher on an empathy scale activated this system more strongly, adding evidence for a possible link between the motor mirror system and empathy.  相似文献   

13.
The neural bases of imitation learning are virtually unknown. In the present study, we addressed this issue using an event-related fMRI paradigm. Musically naive participants were scanned during four events: (1) observation of guitar chords played by a guitarist, (2) a pause following model observation, (3) execution of the observed chords, and (4) rest. The results showed that the basic circuit underlying imitation learning consists of the inferior parietal lobule and the posterior part of the inferior frontal gyrus plus the adjacent premotor cortex (mirror neuron circuit). This circuit, known to be involved in action understanding, starts to be active during the observation of the guitar chords. During pause, the middle frontal gyrus (area 46) plus structures involved in motor preparation (dorsal premotor cortex, superior parietal lobule, rostral mesial areas) also become active. Given the functional properties of area 46, a model of imitation learning is proposed based on interactions between this area and the mirror neuron system.  相似文献   

14.
Neuroscience research during the past ten years has fundamentally changed the traditional view of the motor system. In monkeys, the finding that premotor neurons also discharge during visual stimulation (visuomotor neurons) raises new hypotheses about the putative role played by motor representations in perceptual functions. Among visuomotor neurons, mirror neurons might be involved in understanding the actions of others and might, therefore, be crucial in interindividual communication. Functional brain imaging studies enabled us to localize the human mirror system, but the demonstration that the motor cortex dynamically replicates the observed actions, as if they were executed by the observer, can only be given by fast and focal measurements of cortical activity. Transcranial magnetic stimulation enables us to instantaneously estimate corticospinal excitability, and has been used to study the human mirror system at work during the perception of actions performed by other individuals. In the past ten years several TMS experiments have been performed investigating the involvement of motor system during others' action observation. Results suggest that when we observe another individual acting we strongly 'resonate' with his or her action. In other words, our motor system simulates underthreshold the observed action in a strictly congruent fashion. The involved muscles are the same as those used in the observed action and their activation is temporally strictly coupled with the dynamics of the observed action.  相似文献   

15.
The automatic translation of folk psychology into newly formed brain modules specifically dedicated to mind-reading and other social cognitive abilities should be carefully scrutinized. Searching for the brain location of intentions, beliefs and desires-as such-might not be the best epistemic strategy to disclose what social cognition really is. The results of neurocognitive research suggest that in the brain of primates, mirror neurons, and more generally the premotor system, play a major role in several aspects of social cognition, from action and intention understanding to language processing. This evidence is presented and discussed within the theoretical frame of an embodied simulation account of social cognition. Embodied simulation and the mirror neuron system underpinning it provide the means to share communicative intentions, meaning and reference, thus granting the parity requirements of social communication.  相似文献   

16.
The human brain contains specialized circuits for observing and understanding actions. Previous studies have not distinguished whether this "mirror system" uses specialized motor representations or general processes of visual inference and knowledge to understand observed actions. We report the first neuroimaging study to distinguish between these alternatives. Purely motoric influences on perception have been shown behaviorally, but their neural bases are unknown. We used fMRI to reveal the neural bases of motor influences on action observation. We controlled for visual and knowledge effects by studying expert dancers. Some ballet moves are performed by only one gender. However, male and female dancers train together and have equal visual familiarity with all moves. Male and female dancers viewed videos of gender-specific male and female ballet moves. We found greater premotor, parietal, and cerebellar activity when dancers viewed moves from their own motor repertoire, compared to opposite-gender moves that they frequently saw but did not perform. Our results show that mirror circuits have a purely motor response over and above visual representations of action. We understand actions not only by visual recognition, but also motorically. In addition, we confirm that the cerebellum is part of the action observation network.  相似文献   

17.
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.  相似文献   

18.
The human ventral premotor cortex overlaps, at least in part, with Broca's region in the dominant cerebral hemisphere, that is known to mediate the production of language and contributes to language comprehension. This region is constituted of Brodmann's areas 44 and 45 in the inferior frontal gyrus. We summarize the evidence that the motor related part of Broca's region is localized in the opercular portion of the inferior frontal cortex, mainly in area 44 of Brodmann. According to our own data, there seems to be a homology between Brodmann area 44 in humans and the monkey area F5. The non-language related motor functions of Broca's region comprise complex hand movements, associative sensorimotor learning and sensorimotor integration. Brodmann's area 44 is also a part of a specialized parieto-premotor network and interacts significantly with the neighbouring premotor areas. In the ventral premotor area F5 of monkeys, the so called mirror neurons have been found which discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding not only to the observation of mouth actions, but also to sounds characteristic to actions have been found. In humans, through an fMRI study, it has been shown that the observation of actions performed with the hand, the mouth and the foot leads to the activation of different sectors of Broca's area and premotor cortex, according to the effector involved in the observed action, following a somatotopic pattern which resembles the classical motor cortex homunculus. On the other hand the evidence is growing that human ventral premotor cortex, especially Brodmann's area 44, is involved in polymodal action processing. These results strongly support the existence of an execution-observation matching system (mirror neuron system). It has been proposed that this system is involved in polymodal action recognition and might represent a precursor of language processing. Experimental evidence in favour of this hypothesis both in the monkey and humans is shortly reviewed.  相似文献   

19.
Certain regions of the human brain are activated both during action execution and action observation. This so-called ‘mirror neuron system’ has been proposed to enable an observer to understand an action through a process of internal motor simulation. Although there has been much speculation about the existence of such a system from early in life, to date there is little direct evidence that young infants recruit brain areas involved in action production during action observation. To address this question, we identified the individual frequency range in which sensorimotor alpha-band activity was attenuated in nine-month-old infants'' electroencephalographs (EEGs) during elicited reaching for objects, and measured whether activity in this frequency range was also modulated by observing others'' actions. We found that observing a grasping action resulted in motor activation in the infant brain, but that this activity began prior to observation of the action, once it could be anticipated. These results demonstrate not only that infants, like adults, display overlapping neural activity during execution and observation of actions, but that this activation, rather than being directly induced by the visual input, is driven by infants'' understanding of a forthcoming action. These results provide support for theories implicating the motor system in action prediction.  相似文献   

20.
Sensorimotor learning configures the human mirror system   总被引:8,自引:0,他引:8  
Catmur C  Walsh V  Heyes C 《Current biology : CB》2007,17(17):1527-1531
Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号